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Abstract 

There has been little research on infants’ development of 
causal inference in the second year after birth. We report an 
experiment in which 9- to 18-month-old infants viewed visual 
sequences consisting of three looming shapes, one after 
another. Half of the sequences (causes) were predictive of an 
attention-getting reward (effect), and the other half were non-
predictive. The statistical complexity of predictive sequences 
was varied between conditions. We analyzed latencies of 
infants’ eye movements toward the reward location. Older 
infants yielded more anticipatory eye movements in 
predictive than non-predictive sequences. Effects of both 
infant age and complexity of causal sequences were observed. 
To qualitatively account for these findings, we formulated a 
Bayesian model based on generic priors favoring simple 
causal events coupled with noisy shape identification. 
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Introduction 
Understanding cause-effect relations is vital to cognitive 
development. Imagine, for example, an infant attempting to 
disambiguate his mother’s actions as she starts up the car, 
adjusts the mirror, scans the surroundings, engages first 
gear, and turns the steering wheel, at which point the car 
moves. How do infants make sense of such causal action 
sequences? How do they determine which actions are 
necessary, and in which order, to produce an effect? How do 
they use this knowledge to guide their own actions?  

We address these questions with a combination of 
behavioral and computational evidence. We report an 
experiment in which infants observe causal action sequences 
for which cause-effect relations are specified by conditional 
probabilities of varying complexity, and we describe a 
Bayesian model that simulates the inferences that support 
identification of causal structure. We reasoned that 
identifying causal structure incorporates multiple sources of 
information (e.g., spatiotemporal, statistical) and 
perceptual/cognitive mechanisms (e.g., visual attention, 
detection of serial order, working memory, inherent biases) 
that must operate in concert during the learning process. 

Causal Inference in Infants  
Previous research has shown that infants make remarkable 
progress in acquiring sophisticated inferential abilities in the 
first two years after birth. Within the first few months, for 
example, infants demonstrate statistical learning in multiple 
sensory modalities (Frank et al., 2009; Kirkham, Slemmer, 
& Johnson, 2002; Saffran, Aslin, & Newport, 1996; 

Teinonen et al., 2009) and motion-based causal perception 
given spatial and temporal contiguity (Leslie & Keeble, 
1987). By 18-24 months, children begin to expect 
predictable effects from learned sequences of discrete causal 
events (Bonawitz et al., 2010), and by 24-48 months, they 
routinely use the covariation patterns between actions and 
state changes to categorize objects by causal power and 
predict the effects of causal actions (Gopnik & Sobel, 2000).  

How do infants progress from the perceptual mechanisms 
of early infancy (statistical and rule-based learning and 
motion-based causal perception) to the extraction of causal 
structure from temporal covariation between discrete 
events? Little is known about learning processes in infancy 
that support causal inference. Research on causal inference 
in children under 18 months of age has been limited because 
the tasks typically used, such as the “blicket” detector 
paradigm (Gopnik & Sobel, 2000), require vocal ability 
and/or motor skills. It has been difficult, therefore, to 
characterize infants’ development of causal learning, 
leaving open the issue of whether early motion-based causal 
perception is generalized to higher-order causal inference 
(Michotte, 1946/1963), or whether the former is merely a 
special case of the latter (Cheng, 1993). 

Causal inferences are necessarily constrained by limits in 
perception, attention, and memory. In particular, potential 
causal cues and their temporal ordering must be determined 
before statistical computation can proceed. The literature on 
animal conditioning is consistent with an inherent 
connection between detection of causal cues and causal 
inference. For example, Balleine et al. (2005) showed that 
increased perceptual discriminability of cues enhances rats’ 
ability to acquire cause-effect associations, influencing 
sophisticated behavior such as retrospective revaluation of 
cues. We would expect, therefore, that development of 
causal inference is constrained by infants’ perceptual 
processing maturity and working memory capacity, as well 
as the identification of conditional probabilities involved in 
predicting an effect. Our experiment and our model 
represent a first step in understanding developments in 
causal inferences from probabilistic information during this 
important transitional age range, as well as the perceptual 
and cognitive constraints on the learning process. 

Paradigm 
An experiment by Buchsbaum et al. (2011) with 41- to 70-
month-old children provides a paradigm that we adapted to 
create a causal inference task that can be performed by 
younger infants. The children in Buchsbaum et al.’s study 
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observed an adult performing a series of five 3-action 
sequences on a toy (e.g., knocking, stretching, rolling), such 
that certain sequences were followed by a desirable outcome 
(a musical jingle). Afterwards, the children were given the 
toy, and asked to reproduce the effect. 

Three conditions were examined, varying the statistical 
complexity of causes. In the ABC condition, the music 
played only when a specific set of three actions (A, B, and 
C) were performed in order; in the BC condition, the music 
played whenever the final two actions (B and C) were 
performed in order, regardless of what action was performed 
in the first position; and in the C condition, the music played 
after every sequence (all sequences ended in action C, but 
the first and second positions varied). 

The results of the experiment demonstrated that when 
given the toy, significantly more children in the BC and C 
conditions were willing to imitate shorter action sequences 
that had never been shown in isolation, rather than a 3-
action sequence as they had been shown during learning. 
The children appeared to infer the conditional probabilities 
between the actions that are predictive of the effect, and 
used that information to make rational choices about which 
actions performed by the adult needed to be imitated in 
order to produce the effect. These results, and the Bayesian 
model formulated by Buchsbaum et al. (2011), suggest that 
the children combined this conditional probability 
information (statistical learning) with prior beliefs about 
causal events in making decisions to imitate specific actions. 

Experiment 
The goal of our study was to investigate perceptual and 
cognitive constraints on infants’ learning of causal action 
sequences, in particular developments related to 
identification of conditional probabilities governing causal 
structures. To examine the development of causal inference 
in infants, we combined methods from studies of statistical 
learning (e.g., Kirkham et al., 2002) with a perceptual 
analog of the causal inference paradigm described 
previously (Buchsbaum et al., 2011). We presented infants 
with 48 sequences of three looming, colored shapes that 
were predictive (or not) of the appearance of an attractive 
“reward,” a colorful, animated attention-getting stimulus 
shortly after the final shape’s offset. We operationalized the 
learning of causal structure as a greater tendency to 
anticipate the reward (using eye movements as the 
dependent measure) in true (predictive of the reward) vs. 
false (non-predictive) sequences, and we examined the time 
course of learning in each condition across trials. 

Statistical learning experiments involve passive detection 
of conditional probabilities from a continuous stimulus 
stream. Our approach differs by requiring the detection of 
cues’ statistical regularity in predicting a reward that is 
qualitatively and spatially distinct from the cues themselves. 
This design and the use of an eye tracker allow us to study 
the mechanisms characteristic of causal inference in a 
younger age range than what has been previously reported 
outside of motion-based causal perception. 

Method 
Participants Sixty-three infants (31 female), ranging from 
9- to 18-months-old (M age = 13.6 months), were recruited 
from a database of new parents and tested at the University 
of California, Los Angeles (UCLA) Baby Lab. An 
additional 28 infants were observed but eliminated from 
data analysis due to excessive fussiness (13), inattention 
(12), or experimenter error (3). Infants were given a toy as a 
thank-you gift in exchange for participation in the 
experiment. Twenty-five infants were assigned to the ABC 
condition, 19 to the BC condition, and 19 to the C condition 
(described subsequently). 
 
Procedure Infants were seated in a parent’s lap; the adult 
was instructed not to interact with the infant or look at the 
stimulus monitor. Infants were placed 60 cm from the 
monitor. Eye movements were recorded with an SR 
EyeLink 1000 (SR Research, Ltd) at 500 hz. 

The computer screen displayed two gray square frames, 
9.4 cm per side (9.0˚ at the 60-cm viewing distance), side-
by-side on a black background and separated by 8.6 cm 
(8.2˚) (Figure 1). One frame (the left in Figure 1, but 
counterbalanced across subjects) was designated for the 
shape sequences, while the frame on the other side 
displayed the reward (when applicable). The shapes were 
presented for 750 ms each (2250 ms for the total sequence), 
followed by a 750-ms interstimulus interval (ISI) after the 
third shape. For the trials with the reward (true trials), a 
dynamic attention-getter appeared after the ISI in the 
opposite frame for 1500 ms. Example videos available: 
http://www.babylab.ucla.edu/index.php?page=causal-action. 

Analogously to the paradigm employed by Buchsbaum et 
al. (2011), each infant was randomly assigned to one of 
three conditions: ABC, BC, or C. These conditions 
correspond to the number and position of the shapes that 
were predictive of the reward (Figure 2). In the ABC 
condition, all 24 true sequences consisted of the same three 
shapes in the same positions, such that shape A was always 
first, shape B second, and shape C third. In the BC 
condition, the 24 true sequences consisted of 8 trials each of 
ABC, DBC, and EBC, such that only shapes B and C in the 
second and third positions (respectively) predicted the 
reward (i.e., the first position’s shape was variable). In the C 

 
Figure 1: Schematic depiction of the stimulus layout. 
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condition, the 24 true sequences all ended with shape C in 
the third position, but the first two positions were randomly 
sampled (without replacement). 

For all three conditions, the 24 false sequences were 
random permutations of the 5 shapes (A-E) with the 
constraints that in the BC condition there were no BCx trials 
(i.e., B and C did not appear consecutively except in the 
second and third positions), and in the C condition, there 
were no Cxx or xCx trials (i.e., C did not appear outside the 
third position). Shapes were never repeated within a trial 
(e.g., there were no AAC or BDB trials) for either true or 
false sequences. The 48 sequences were presented in a 
randomized order. 

For each infant, shapes were randomly assigned to role A, 
B, C, D, or E. The shapes were a blue square, red circle, 
green cross, yellow triangle, and orange diamond (Figure 2), 
such that color and shape information were redundant (to 
increase distinctiveness and facilitate identification).  

Eye tracking data were analyzed to extract predictive gaze 
shifts (PGS), defined as directing the point of gaze away 
from the frame displaying the shape sequences toward the 
reward’s frame 200 ms or less prior to the actual onset of 
the reward (inferred to be anticipatory). The 200-ms 
criterion was based on the estimated time to program an eye 
movement (Gredebäck, Johnson, & von Hofsten, 2010). 
Gaze shifts to the reward’s frame that were completed after 
200 ms past its onset were not classified as PGS (inferred to 
be reactive). For each subject, we computed the difference 
between the number of PGS for true trials and for false 
trials. We used this PGS difference score as an indicator of 
how well the infants learned what sequences predicted the 
effect. 

We hypothesized that (1) older infants would produce 
more PGS for true vs, false trials (higher PGS difference 
scores) than younger infants, regardless of condition, due to 
development in perceptual processing, attention, and/or 
memory, and that (2) infants would produce the highest 
PGS difference scores in the C condition, followed by BC, 

followed by ABC, due to the added complexity of tracking 
conditional probabilities in BC and multiple sets of 
conditional probabilities in ABC. 

Results 
As noted, a greater number of PGS in true vs. false trials 
was taken as evidence for causal structure learning. We first 
used a median split to divide the sample into two age 
groups, and found that older infants (M = 15.6 months) 
produced reliably more positive PGS difference scores 
overall than younger infants (M = 11.4 months), M PGS 
difference = .65 vs. -.86, respectively, t(61) = 2.29, p = .026. 
However, as revealed by within-condition t-tests, older 
infants’ performance significantly exceeded chance only in 
the C condition, (t(9) = 2.50, p = .034), while it was 
marginally significant in BC (t(8) = 1.98, p = .084)  and not 
significant in ABC (t(14) = -.335, p = .742). 

Analysis of correlations between age and PGS difference 
confirmed these observations. We found a significant 
overall correlation between infants’ age and PGS difference 
(r = .28, p = .025). Within each condition (Figure 3), the 
correlation between age and PGS difference was statistically 
significant for the C condition (r = .48, p = .036), marginally 
significant for the BC condition (r = .39, p = .10), and non-
significant for the ABC condition (r = .16, p = .45). 

To examine learning across trials, we computed a series 
of generalized estimating equations with PGS difference as 
the dependent variable. We found a marginally significant 
age x trial type x trial interaction in the ABC condition (p = 
.09), but the interactions in BC and C conditions were not 
statistically significant (ps = .15 and .77, respectively).  

The overall positive correlation between age and PGS 
difference supports our first hypothesis that older infants 

 
Figure 2: Schematic depiction of causal action sequences. 
Distinct colored shapes correspond to items A-E. In the 
actual experiment, shape assignment (i.e., which shapes 
corresponded to which letter roles) was randomized across 
subjects. The letter x indicates variable shape positions 
(randomized each trial). 
 

 
Figure 3: Differences in predictive gaze shifts (PGS) in true 
vs. false trials as a function of condition and age. Points 
correspond to individual infants, plotted by their age and the 
number of their PGS during true trials – the number of their 
PGS during false trials. Chance level performance = 0. 
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would outperform younger infants. The within-condition 
correlations suggest that development in this period is 
strongest for the C condition, followed by BC, which 
provides tentative support for our second hypothesis, 
implying that infants are better able to make causal 
predictions when the number of conditional probabilities 
they need to track is relatively low. Performance did not 
improve across trials in the BC and C conditions as infants 
gained experience in the task. There was some suggestion of 
age-related improvement across trials in the ABC condition, 
perhaps owing to older infants’ ability to detect multiple 
conditional probabilities in this sequence with repeated 
exposure. 

Bayesian Model 
We developed a Bayesian model to simulate the causal 
inference in each trial and to predict the occurrence of the 
reward (effect). The model incorporates generic priors 
favoring simple causes, a constrained causal hypothesis 
space (subset of all possible hypotheses) to reflect the 
limited working memory of infants, and a noisy function for 
correctly identifying and memorizing the shapes in each 
sequence to emulate developing perception and memory 
systems in infancy. 

To enable the inference, the model first defined a 
constrained causal space (set of all possible causal structures 
to be considered) using all permutations of the five 
candidate shapes in each of the three positions, with 
allowance for variable shape position(s). For example, the 
causal structure in Figure 4a would predict the effect 
following a sequence of the blue square in the first position, 
red circle in the second, and green cross in the third; the 
structure in Figure 4b predicts the effect following the red 
circle in the second position and green cross in the third, 
regardless of the first shape. This first example would 
correspond to an ABC cause in the behavioral paradigm, 
and the second a BC cause. Unlike Buchsbaum et al. (2011), 
non-terminal subsequences (e.g., ABx) are considered 
possible causes. 

The hypothesis space, 𝐻, is defined over the causal space, 
such that a given hypothesis, ℎ, is drawn from a set of 
causes. The current model assumes that all hypotheses 
consist of only one cause, reflecting the limited working 
memory in infancy. 

To make a comparison with infants’ behavioral measure   
(PGS), the model predicts the probability of a reward given 
the current shape sequence and all previous data. The 
computation sums over all hypotheses ℎ in the hypothesis 
space 𝐻 to compute the probability of the reward (𝑟) given 
some current shape sequence (𝑠) and all previous trials’ 
sequence and reward data (𝐷): 

                                    𝑃 𝑟     𝑠,𝐷) =    𝑃 𝑟     𝑠, ℎ)𝑃 ℎ     𝐷)
!∈!

  .                          (1) 

The posterior distribution, 𝑃 ℎ     𝐷), represents the most 
current belief about the cause of the reward given all prior 
data, and is easily computed from Bayes’ rule:  

𝑃 ℎ     𝐷) =   
𝑃 𝐷     ℎ)𝑃(ℎ)
𝑃 𝐷     ℎ′)𝑃(ℎ′)!!

    . 

The prior probability of a hypothesis,  𝑃(ℎ), is based on the 
prior distribution defined in Buchsbaum et al. (2011, Eq. 3), 
modified as:  

                      𝑃 ℎ =   𝑃 𝑐 ∈ ℎ =   
1

1 + exp  (−𝛽 𝑐 − 2 )
    ,          (2) 

where |𝑐| is the length of causal sequence 𝑐 in hypothesis ℎ. 
In our experiment, this is the number of specified shapes, 1 
to 3. In Eq. 2, 𝛽 represents a prior favoring causal sequences 
of a certain length. 𝛽 < 0 gives preference to shorter 
sequences. 

The likelihood of observing the data given a specific 
hypothesis, 𝑃 𝐷     ℎ), is computed as the product of the 
likelihood probability for all previous trials’ sequences and 
the presence or absence of the reward: 

    𝑃 𝐷     ℎ) =    𝑃 𝑟     𝑠, ℎ)
!,!∈!

  . 

The conditional probability of the reward given a specific 
shape sequence and causal hypothesis, 𝑃 𝑟     𝑠, ℎ), also 
computed in Eq. 1, is determined by two factors: the 
probability of a candidate causal event 𝑐 generating a 
reward 𝑟, and the probability of identifying causal event 𝑐 
based on the observed shape sequence  𝑠, 

                                        𝑃 𝑟     𝑠, ℎ) =    𝑃 𝑟     𝑐, ℎ)𝑃(𝑐   𝑠
!

  .                              (3)   

The two components in Eq. 3 can be conceptualized, 
respectively, as the prediction of the reward’s presence or 
absence given the constituent causes of the sequence, 
𝑃 𝑟     𝑐, ℎ), and the identification of each candidate cause 
from the sequence of shapes, 𝑃(𝑐     𝑠 . 

The prediction component computes the probability of the 
effect following the identified sequence and corresponds to 
causal reasoning. In this model, it is assumed that causes 
are deterministic, i.e., the reward always occurs if the 
candidate causal event in the hypothesis is identified.  

The identification component involves a noisy process of 
recognizing potential causal cues, resulting from attention, 
perception, and memory constraints in infancy. We 
introduce probabilistic noise to allow a certain probability of 
misidentifying or misremembering cues. This probability 
weights the deterministic causal reasoning to yield a 
probabilistic likelihood function in Eq. 3. The identification 
probability can be calculated using Bayes’ rule as: 

 
Figure 4: Two possible hypotheses (a subset of the 
constrained hypothesis space), each positing a single cause 
of the effect. For each candidate cause, the specified shape 
must appear in that position (e.g., a blue square first). The 
letter x indicates variable shape positions. 
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                                                𝑃 𝑐     𝑠) =
𝑃 𝑠     𝑐)𝑃(𝑐)
𝑃 𝑠     𝑐′)𝑃(𝑐′)!!

  .                                                (4) 

The prior probability of each candidate cause 𝑐 is computed 
as in Eq. 2. The likelihood of 𝑠 given 𝑐 is defined using a 
multinomial distribution as: 

                                                    𝑃 𝑠     𝑐) =   𝜃!
1 − 𝜃
4

|!|!!

,                                              (5) 

where 𝜃 represents the probability of correctly identifying 
and remembering a given shape (“matching probability”) 
and m is the number of specified shapes in 𝑐 that match (in 
the same position) those in 𝑠. Given that there are five 
unique shapes, 𝜃 = 0.2 corresponds to matching at chance. 

Assessment 
Under the assumptions of single-cause hypotheses and 
deterministic causes, we evaluated the performance of the 
model under different values for model parameters: the 
probability that an infant will correctly identify and 
remember a given shape (𝜃) in Eq. 5 and the degree of the 
preference favoring shorter causal sequence lengths (𝛽) in 
Eq. 2. These parameters correspond to constraints on 
perception and simplicity preference in causal reasoning, 
respectively. 

The model predicted the probability of a 
reward,  𝑃 𝑟     𝑠,𝐷), for each trial in each individual infant’s 
session. Then we averaged 𝑃 𝑟     𝑠,𝐷) across all true trials 
(i.e., predictive of the reward) and all false trials, separately. 
To compute the model prediction analog to the PGS 
difference score for infants, we calculated the difference in 
expected frequencies of PGS for both true and false trials, to 
fit each individual’s data. We then averaged across subjects 
within each of the three conditions.  

Figure 5 shows the model’s performance as a function of 
𝛽, the degree to which simple causes are favored, when 
𝜃 = 1 (i.e., perfect shape identification).   When 𝛽 < 0, 
favoring simple causes, the model achieves the best 
performance in the C condition, followed by BC, then ABC 
(the latter two track closely in the range −1 < 𝛽 < 0), 
consistent with older infants’ performance as shown in 
Figure 3.  However, when 𝛽 > 0, indicating a bias favoring 
longer shape sequences (as used in Buchsbaum et al., 2011), 
the model predicts the opposite pattern, with the ABC 
condition yielding the best performance, and the C condition 
the worst. Accordingly, we conclude that a negative 𝛽, 
favoring simple causes with shorter shape sequences, is 
essential to account for the overall main effect of better 
performance for infants in the C condition relative to ABC. 

We also examined the influence on model performance of 
the second model parameter, 𝜃, the probability of correct 
shape-matching. We assume that infants are able to identify 
shapes better (i.e., adopt higher 𝜃 values) with increasing 
age. Figure 6 depicts the model performance as a function of 
matching probability when 𝛽 = −1 (preference for shorter 
causes). The model exhibits better performance with the 
increase of shape matching probability for the C condition, 

consistent with the significant age effect observed for 
infants in the C condition. For the BC condition, a smaller 
improvement was revealed by the model, in agreement with 
the marginal age effect in infant performance. In contrast, 
the ABC condition did not show monotonic improvement 
over the range of matching probabilities, and also exhibited 

 
Figure 6: Model results. The expected frequencies of PGS 
difference as a function of 𝜃 values: the matching 
probability for shape identification (𝜃 = 0.2 is chance). 
This simulation assumes the other model parameter 𝛽 = −1 
(i.e., favoring simple causes with shorter shape sequences). 

 
Figure 5: Model results. The expected PGS difference 
scores as a function of 𝛽 values: causal sequence length 
bias. 𝛽 > 0 favors longer causal sequences; 𝛽 < 0 favors 
shorter causal sequences (𝛽 = 0 is uniform). This 
simulation assumes the other model parameter 𝜃 = 1 (i.e., 
perfect shape identification and memory). 
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performance at or below chance level (i.e., same frequency 
of PGS for predictive and non-predictive sequences) for all 
values except 𝜃 = 1, when shapes were perfectly 
recognized and memorized. Such chance-level performance 
in the ABC condition when the shape identification process 
is noisy is consistent with the observed performance of the 
infants, suggesting the infants’ failure to learn in the ABC 
condition may be due to their noisy perception and limited 
attention and memory for identifying and remembering the 
shapes. 

General Discussion 
The experiment and model provide an important first step 
toward assessing the developmental changes in the second 
year of infancy that increase sensitivity to more statistically 
complex cause-effect relations. What developmental 
mechanisms could be at work? Our experimental results 
imply that performance was constrained by statistical 
complexity, in particular computation of conditional 
probabilities in the BC and ABC causal sequences, and our 
modeling results in turn imply that these computations may 
be constrained by difficulties identifying individual items 
and remembering their ordering in sequence. It remains for 
future studies to examine these possibilities, and to pinpoint 
the ages at which infants are able to track item identity and 
ordering so as to examine their contributions to detecting 
multiple conditional probabilities in predicting an effect. 

It might be objected that the task we used is solvable by 
purely associative properties (i.e., statistical regularity). 
However, it is unclear whether standard associative 
accounts would be able to explain why performance was 
better in the C condition than in the other two conditions, 
since the statistical regularity was comparable across all 
three conditions.  As previous research has shown, statistical 
regularity is necessary but not sufficient for causal 
inference: the learner must also have an a priori notion of 
causes (Cheng, 1997) and prior knowledge to enable 
efficient inference of causal relations (Griffiths & 
Tenenbaum, 2009; Lu et al., 2008). 

The current study provides converging evidence for the 
importance of generic causal prior knowledge and highlights 
constraints based on attention, perception, and memory in 
guiding high-level causal reasoning in infancy. The novel 
experimental paradigm goes beyond the limitations of 
previous statistical learning and causal perception research, 
offering a promising new approach to determine how these 
processes develop in infancy. Planned future experiments 
using this paradigm, along with corresponding extensions of 
the Bayesian model, will contribute to better understanding 
of this developmental trajectory. 
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