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Abstract 

Recent work on causal learning has investigated the possible 
role of generic priors in guiding human judgments of causal 
strength. One proposal has been that people have a preference 
for causes that are sparse and strong—i.e., few in number and 
individually strong (Lu et al., 2008). Sparse-and-strong priors 
predict that competition can be observed between candidate 
causes of the same polarity (i.e., generative or else 
preventive) even if they occur independently. For instance, 
the strength of a moderately strong cause should be 
underestimated when a strong cause is also present, relative to 
when a weaker cause is present. In previous work (Powell et 
al., 2013) we found such competition effects for causal set-
ups involving multiple generative causes. Here we investigate 
whether analogous competition is found for strength 
judgments about multiple preventive causes. An experiment 
revealed that a cue competition effect is indeed observed for 
preventive causes; moreover, the effect appears to be more 
persistent (as the number of observations increases) than the 
corresponding effect observed for generative causes.  These 
findings, which are consistent with predictions of a Bayesian 
learning model with sparse-and-strong priors, provide further 
evidence that a preference for parsimony guides inferences 
about causal strength. 

Keywords: causal learning; generic priors; causal strength; 
parsimony; Bayesian modeling 

Introduction 
Prior Beliefs in Causal Learning 
Humans (and other intelligent organisms) are able to extract 
causal knowledge from patterns of covariation among cues 
and outcomes (for a review see Holyoak & Cheng, 2011). 
This knowledge enables us to predict the likely effects of 
interventions, and to better anticipate the outcomes of 
actions and events in the world. Causal knowledge goes 
beyond mere strength of association, instead depending on 
inferences about underlying causal links. Because causal 
relationships are not themselves observable, their existence 
must be posited a priori. Thus a certain degree of prior 
knowledge about causal relationships is required before 
causal learning can occur. 

Viewed from a Bayesian perspective, causal inferences 
are expected to be a joint function of likelihoods (the 

probability of observing the data given potential causal links 
of various possible strengths) and priors (expectations about 
causal links that the learner brings to the task). An 
understanding of how causal links operate and act together 
is encoded in the likelihood term, whereas prior knowledge 
about what sorts of causal relationships are most likely is 
encoded in the prior term. Generic causal priors constitute 
preferences for certain types of causal explanations, based 
on abstract properties rather than domain-specific 
knowledge. 
 Although some Bayesian models have assumed 
uninformative priors (e.g., Griffiths & Tenenbaum, 2005), 
other models have incorporated substantive generic priors 
about the nature of causes. Lu et al. (2008) proposed that 
people have a preference for causes that are sparse and 
strong: i.e., a preference for causal models that include a 
relatively small number of strong causes (rather than a 
larger number of weak causes). Using an iterative-learning 
method, Yeung and Griffiths (2011) empirically derived a 
different (though non-uniform) prior that was suggestive of 
a preference for strong causes, but that lacked the 
competitive pattern associated with the sparse prior. 
However, in their study the iterative method did not fully 
converge for the background cause; hence their results are 
open to multiple interpretations. Sparse-and-strong priors 
can be viewed as a special case of a more general pressure 
to encourage parsimony (Chater & Vitanyi, 2003), which 
implies a combination of simplicity and explanatory power 
(see also Novick & Cheng, 2004; Lombrozo, 2007). 

Generic Prior: Sparse-and-Strong (SS) Causes 
Lu et al. (2008) formalized the “SS power” model with 
sparse-and-strong (SS) priors for simple causal models with 
a single candidate cue and a constantly-present background 
cause. By default (in accord with the power PC theory of 
causal learning; see Cheng, 1997), the background cause is 
assumed to be generative (making the effect happen). When 
the candidate cause also generates (rather than prevents) the 
effect, SS priors create an expectation that the candidate 
cause will be strong (strength close to 1) and the 
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background weak (strength close to 0), or vice versa. A 
single free parameter, α, controls the impact of the prior 
(when α = 0, the prior distribution of strength is uniform).  
Lu et al. (2008) fit several causal learning models to 
parametric data for human strength judgments. They found 
the best fit was provided by a Bayesian implementation of 
the power PC theory that incorporated SS priors with an α 
value of 5 (not 0), implying a human preference for sparse-
and-strong causes. 
 The original formulation only considered the simple case 
of competition between one generative candidate cause and 
the (generative) background cause. More recently, Powell et 
al. (2013) generalized the model to situations involving 
multiple generative candidate causes. The qualitative 
signature of SS priors is the preference for one strong cause 
of a given polarity (generative or else preventive) coupled 
with other weak causes; for example, a set of “ideal” causal 
strengths for three generative causes might be wA=1, wB=0 
and wC=0 (where each w indicates a value of causal 
strength, ranging from 0 to 1, for a particular candidate 
cause). Note that the SS prior does not express any 
preference about precisely which cause(s) are strong and 
which are weak. 
 This preference instantiated in SS priors implies a key 
empirical prediction: in judgments of causal strength, 
competition will be observed when multiple causes of the 
same polarity co-occur. That is, if a candidate cause appears 
along with one or more other causes of greater strength (as 
defined by likelihoods), then the strength of the weaker 
candidate cause will be underestimated.  
 Powell et al. (2013) tested the prediction of SS priors 
using a causal setup with three generative candidate causes. 
The objective power of one cause (A) was fixed at a 
moderate value of .50. The power of a second generative 
cause (B) was varied across conditions to be either low (.20) 
or high (.80). A third cause (C) served as a “visible” 
background cause, with power always set to a low value 
(.10). The contingencies were arranged so that the 
occurrences of cues A and B were uncorrelated with each 
other. Neither A nor B ever appeared alone (whereas C 
sometimes did), creating uncertainty in estimating the 
strengths of A and B. After participants had made a 
relatively small number of observations, cue A was judged 
to be weaker when the alternative (but uncorrelated) cause B 
was strong than when it was weak. After additional cases 
were presented, the two conditions converged. Powell et al. 
showed that a sparse-and-strong prior accurately 
characterized the expectations that would create the 
observed competition effect. This competition dynamic 
cannot be explained by naïve Bayesian models that assume 
uninformative priors (Busemeyer et al., 1993). 

The Case of Preventive Causes 
In the present paper we consider whether or not similar 
competition effects can be observed in situations involving 

multiple preventive causes. To the best of our knowledge, 
no previous study has investigated this possibility. The 
original formulation of SS priors (Lu et al., 2008) only 
considered the case of a single candidate cause coupled with 
the background cause. By default the background cause is 
assumed to be generative (since unless something generates 
the effect, it is impossible to assess whether other cues 
prevent it). Hence, in the case of a single candidate cause, 
SS priors predict competition effects for a generative 
candidate (which will compete with the generative 
background cause), but not for a preventive candidate 
(which will not compete with the generative background, 
given the basic assumption that only causes of the same 
polarity compete). In accord with these predictions, Lu et al. 
reported experiments showing competition effects for 
strength judgments about a generative candidate cause, but 
not a preventive cause. 
 Preventive causes are known to exhibit several 
asymmetries relative to generative causes (Carroll, Cheng & 
Lu, 2013; Cheng et al., 2007), so it is not obvious whether 
or not competition effects would be observed for preventive 
causes in more complex setups. However, the general 
principle of SS priors implies that multiple preventive 
causes will also compete. Testing this hypothesis requires 
creating a more complex, multi-cue causal setup, similar to 
the three-cause setup Powell et al. (2013) used to show 
competition among multiple generative causes. In the 
present paper we extend the Bayesian formulation of SS 
priors to the case of multiple preventive causes, and report 
an experiment that tests whether or not multiple preventive 
causes compete in causal strength judgments. 

Generating Contingency Data 
As reviewed above, the sparse-and-strong prior predicts 
competition between co-occurring causes of the same 
polarity. We constructed a set of contingency data D 
(summarized in Table 1) based on the presence of one 
generative cause (C) and the occurrence or non-occurrence 
of two preventive causes (A and B). Two conditions were 
created. The causal powers of A and C were held constant 
across the two conditions (preventive at −.50 and generative 
at .80, respectively, coding preventive causes as negative 
strength values). The causal power of B varied from one 
condition (−.25, weak-B condition) to the other (−.75, 

Table 1. Contingency learning data for one experimental 
block (40 trials) by trial type 
 

Conditions  C AC BC ABC 

Weak-B 
E present 8 4 6 3 
E absent 2 6 4 7 

Strong-B E present 8 4 2 1 
E absent 2 6 8 9 
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strong-B condition). The occurrences of causes A and B 
were independent in both conditions.          

In constructing these contingency data, we employed the 
noisy-OR likelihood function for generative causes, and the 
noisy-AND-NOT function for preventive causes (in accord 
with the power PC theory; Cheng, 1997), since binary 
causes and effects were used in the experiments. For 
example, if cues A and B are preventive causes, and cue C 
is a generative cause, the probability of the effect can be 
calculated as: 

𝑃 𝐸 = 1 𝑤!,𝑤! ,𝑤! = 𝑤!(1 − 𝑤!)(1 − 𝑤!)     (1) 

where E = 1 indicates the presence of the effect. 
 
Sparse-and-Strong Prior for Multiple Preventive 
Causes 
The sparse-and-strong prior for multiple generative and 
preventive causes can be extended using mixture 
distributions as proposed in Lu et al. (2008). The key idea is 
that causes with the same polarity compete. For example, in 
the situation involving cue C as a generative cause and two 
other cues, A and B, as preventive causes, the sparse-and-
strong prior can be defined as: 

𝑃 𝑤!,𝑤! ,𝑤!  

∝ 𝑒!! !!!! (𝑒!!!!!!(!!!!) + 𝑒!! !!!! !!!!).   (2) 

 Importantly, participants in our experiment were not 
informed of the polarity of the individual causes they 
observed. That is, prior to observing the contingency data, 
they did not know which cause(s) generated the effect and 
which prevented it. As discussed by Lu et al. (2008), the SS 
power model can be extended to cover situations in which 
the causal polarity of cues is not known in advance. Since 
human participants observed a C-only condition, we assume 
for simplicity that the polarity of cause C (generative) is 
known (as the likelihood that C is a preventer rapidly falls 
to zero in light of the contingency data). To predict 
participants’ responses in this experimental context, we 
therefore derived sparse-and-strong prior distributions for 
four combinations of generative and preventive A and B 
cues. The prior probability was computed over a domain of 
strengths for both A and B in the range [-1,1]. Density in 
positive regions represents probability density for generative 
strengths, whereas density in negative regions represents 
probability density for preventive strengths. Equation 3 
gives the sparse-and-strong prior functions for each 
quadrant of the domain. Quadrants are labeled with a three-
letter code specifying the polarity of each cause (“P” for 
preventive and “G” for generative) in the order A, B, C. For 
instance, the region representing A and B as preventers and 
C as a generator is labeled “PPG”. 

Thus, we derived the following sparse-and-strong prior 
distribution over the four quadrants of the space depending 
on causal polarities for cues A and B: 

𝑃(𝑤! ,𝑤! ,𝑤!) ∝
𝑒!! !!!! 𝑒!!!!!!(!!!!) + 𝑒!! !!!! !!!! ,                                                                                    𝑃𝑃𝐺
(𝑒!! !!!! !!!! + 𝑒!!!!!!(!!!!))(𝑒!!!! + 𝑒!!(!!!!)),                                            𝑃𝐺𝐺  
(𝑒!! !!!! !!!! + 𝑒!!!!!!(!!!!))(𝑒!!!! + 𝑒!!(!!!!)),                                          𝐺𝑃𝐺
  𝑒!! !!!! !!!!!!!! + 𝑒!!!!!!(!!!!)!!!! + 𝑒!!!!!!!!!!(!!!!),      𝐺𝐺𝐺

 

(3) 

Similarly, the likelihood function was specified over each of 
the four regions: 

𝑃 𝐷 𝑤!,𝑤! ,𝑤! =

𝑤! 1 − 𝑤! 1 − 𝑤! ,                                                    𝑃𝑃𝐺
(1 − 1 − 𝑤! 1 − 𝑤! )(1 − 𝑤!),        𝑃𝐺𝐺  
(1 − 1 − 𝑤! 1 − 𝑤! )(1 − 𝑤!),        𝐺𝑃𝐺  
1 − 1 − 𝑤! 1 − 𝑤𝑩 1 − 𝑤! ,            𝐺𝐺𝐺

 

(4) 
Finally, the posterior was calculated based on Bayes rule as 
 

        𝑃 𝑤!,𝑤! ,𝑤! 𝐷 = ! ! !!,!!,!! ! !!,!!,!!
! !

  .       (5) 

  
To compare with human ratings, the SS power model 

computes the mean of estimated causal strength derived 
from the posterior distribution:  

𝑤! = 𝑤!𝑃(𝑤!|𝐷)
!
! .                         (6) 

The posterior distribution  is obtained by 
marginalizing the posterior probability distribution 
calculated in Equation 5. The means of causal strengths 
estimated from the posterior distributions were used to 
compare with ratings from human participants, as shown in 
Figure 2 and Table 2.   

The model makes two key predictions. First, the 
preventive cause A should be underestimated when in the 
presence of a stronger preventer, relative to when it is 
accompanied by a weaker preventer. Notably, this 
competition effect is predicted despite the fact that A and B 
occur independently. In contrast, a model assuming uniform 
priors predicts no such competition (see Figure 2). Second, 
this competition effect should diminish across learning 
trials. Priors tend to be most informative when data is 
scarce. As the model is exposed to more data, the likelihood 
term should eventually swamp out the competition driven 
by the prior term. However, as shown in Figure 2, the 
predicted impact of the priors persists even after three 
blocks of contingency data (the maximum data that 
participants received in our experiment). When compared to 
the corresponding predictions for three generative causes 
(Powell et al., 2013), the competition effect is predicted to 
be more persistent for the preventive case (potentially due to 
the greater uncertainty for causes of unknown polarities). 

 

Experiment 
Method 
Participants Participants were 107 undergraduate students 
at the University of California, Los Angeles, who 
participated for class credit (29 male, mean age = 21 years). 
Of these, 49 were assigned to the strong-B condition and 58 
to the weak-B condition. 

)|( DwP A
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Procedure Participants read the following cover story: 
“Imagine that you are assisting a doctor at a new island 
resort.  Many of the guests at this new resort have become 
ill, and your job is to determine the cause of the illnesses. 
The resort's doctor suspects that the illnesses may be caused 
by the food the guests are eating. The resort provides a 
complimentary salad bar that offers a selection of exotic 
vegetables. The guests’ salads can be different mixes of 
these vegetables. One or more of the vegetables could be 
making the guests sick. However, not all of the guests who 
ate salad are getting sick. One or more of the vegetables 
may have medicinal properties that prevent the illness. Your 
job is to independently examine the doctor’s theory and 
determine what effects these different vegetables have on 
the guests. These are the three vegetables [pictures of 
vegetables are shown]. You will be reviewing a number of 
case files that describe what a guest ate and whether they 
became sick. Please pay attention to each case…. At several 
points throughout the study, you will be asked to give your 
assessment of the vegetables.  You will be asked to assess 
whether each vegetable causes or prevents the illness. You 
will also be asked to estimate how likely each vegetable is 
to make someone sick or prevent the illness.” 

These vegetables were labeled A, B, and C, and were 
represented by photographs of actual exotic vegetables: 
radicchio, bitter melon, and black garlic. The assignment of 
vegetables to the labels A, B and C was randomized across 
participants. During the learning phase, participants viewed 

“case files” for individual guests, showing which 
combination of vegetables they had eaten, and whether or 
not they had fallen ill  (see Figure 1, top, for an example): 

There were four possible combinations of vegetables: 
each guest had either eaten vegetable C alone, vegetables A 
and C, vegetables B and C, or all three vegetables A, B, and 
C. These four combinations were presented in equal 
number, such that A and B both occurred 50 percent of the 
time, and the correlation between the occurrence of A and B 
was 0 (see Table 1). Forty cases (10 of each type) were used 
per block, as this was the minimum number required to 
reflect the underlying causal powers in the presented 
distribution of cause combinations and their associated 
outcomes. 

The numbers of guests who became sick after eating each 
combination were determined by the causal powers assigned 
to each vegetable. This number was calculated according to 
the noisy-OR and noisy-AND-NOT likelihood functions, 
under the default assumption that all causes act 
independently of one another (Cheng, 1997). In both 
conditions, vegetable C was the generative cause of the 
illness present on every trial, acting with a causal strength of 
.80. Vegetables A and B were always preventive causes, but 
the strength of vegetable B varied depending on the 
condition participants were assigned to. Participants were 
randomly assigned to one of two experimental conditions 
(weak-B or strong-B). In the strong-B condition, vegetable 
B was assigned a preventive causal strength of −.75, 
whereas in the weak-B condition, vegetable B was assigned 
a causal strength of −.25. In each case, vegetable A 
prevented the illness with strength −.50. Cause A was the 
focus of the study, as we were interested in whether its 
judged strength would be influenced by the variation in the 
strength of cause B. Participants were not told ahead of time 
which vegetables were generative causes and which were 
preventive causes.  

Participants viewed three blocks of 40 trials each. In each 
block, the 40 cases were presented sequentially in a 
different random order for each participant. After 
completing a learning block, participants were asked 
questions about each vegetable. For each vegetable, 
participants were first asked a causal polarity question. 
Participants were shown a picture of each vegetable along 
with a question asking whether it caused or prevented the 
illness. Participants pressed “C” to indicate that they 
thought the vegetable caused the illness, and “P” to indicate 
that they thought it prevented the illness. 

After they indicated which type of cause they believed a 
vegetable was, they advanced to the causal strength 
question. If they believed the vegetable was a generative 
cause, they were asked, “Suppose 100 people ate this 
vegetable, how many will get sick?” If they believed the 
vegetable was a preventer they were asked, “Suppose 100 
people are about to get sick. If they all eat this vegetable, 
how many of the 100 will not get sick?” Participants then 

Figure 1: Example trial showing sick guest who ate A, 
B, and C vegetables (top). Example response trial for 
preventive cause (bottom). 
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made their rating using a slider, inputting a value between 0 
and 100 (see Figure 1, bottom). The polarity question 
always preceded the strength question, but the order of the 
three vegetables was randomized for each participant and 
block. After responding to all questions in a block, 
participants were shown a summary of their responses and 
were asked to confirm that they had correctly entered their 
ratings.  

Results 
Six participants mistakenly indicated that cause C was a 
preventer during at least one of the three blocks. As it is 
unclear how their other responses are to be interpreted in 
light of this error, data from these participants were 
excluded from analyses. Participants’ polarity judgments 
and strength ratings for each vegetable were combined into 
a single index. When participants indicated that a cause was 
generative, their strength rating was recorded as their score. 
When they indicated that a cause was preventive, their score 
was computed by multiplying this strength rating by −1. 
 The data for all cues and conditions were compared with 
the SS power model (described above). For modeling 
purposes we simply set α = 5 (the value estimated for the 
data sets reported by Lu et al., 2008), thus avoiding any 
need to fit a free parameter to the present data. We also 
compared the human data to an otherwise identical model 
assuming uniform priors (i.e., α = 0). Figure 2 shows the 
data for the critical A cue, along with the predictions 
derived from the two models. Participants in the strong-B 
condition underestimated the strength of cause A relative to 
participants in the weak-B condition, F(1, 99) = 4.89, p = 
.029. There was no significant main effect of block (F(2, 
198) = 0.83, p = .437) for A ratings, nor was there a 
significant interaction between block and condition (F(2, 

198) = 0.21, p = .813). 
Qualitatively, the SS power model predicts the observed 

difference in the judged strength of A in the weak-B versus 
strong-B conditions more accurately (r = .67) than does the 
model with uniform priors (r = .15). However, the SS prior 
model also predicts that this competition effect will 
diminish (though not disappear) as participants view a 
second and third block of trials. The lack of a significant 
interaction indicates that this second prediction was not 
confirmed. Rather, the competition effect observed in the 
human data remained statistically constant across the three 
blocks. 

Additional analyses were performed on responses to all 
three causal cues. Table 2 presents the mean ratings of 
causal strength obtained for the three different cues in each 
condition, along with the predictions derived from the two 
models based on alternative priors. Analyses of participants’ 
ratings for cause B revealed a somewhat puzzling pattern of 
results. As expected, an ANOVA revealed a strong effect of 
condition, with participants rating cause B as a stronger 
preventer in the strong-B condition than in the weak-B 
condition, F(1, 99) = 31.90, p < .001. However, this analysis 
also revealed a significant main effect across blocks (F(2, 
198) = 12.31, p < .01), as well as a significant interaction 
between block and condition (F(2, 198) = 11.68, p < .01).  

As is apparent in Table 2, in the strong-B condition 
participants’ ratings remained stable across blocks, but in 
the weak-B condition participants rated cause B as a weaker 
preventer in later blocks than in earlier blocks. Neither 
model predicts this trend. The fact that in the weak-B 
condition the estimated strength of B approached zero 
across blocks (rather than its objective value of −.25) 
suggests that some participants may have decided at some 
point that the weaker preventer (i.e., cue B) was simply not 
a cause at all, and then ceased to attend to the cue. Further, 
the effect of this error could then be magnified due to a 
demand pressure to give non-zero responses when presented 
with the strength question. (Across all vegetables, less than 
7% of strength ratings were below an absolute value of 25.) 

Discussion 

The present experiment provides support for the generality 
of a parsimony constraint on estimates of causal strength. 
Previous demonstrations of cue competition between 
independently-occurring causes only involved generative 
causes. Our study found similar competition effects among 
preventive causes, as predicted by a Bayesian model of 
causal learning that assumes sparse-and-strong priors.. A 
preventive cause of moderate strength was judged to be 
weaker when a competing (but uncorrelated) preventive 
cause was strong than when the competing cause was weak. 
This competition dynamic cannot be explained by naïve 
Bayesian models that assume uninformative priors 
(Busemeyer et al., 1993).  

Figure 2: Human causal strength judgments for cause A 
and predictions from models using sparse-and-strong 
(SS) and uniform (Unif) priors across blocks. 
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The competition effect we observed between                                      
two preventive causes was more persistent than that 
observed in a previous study using a setup involving similar 
contingencies among generative causes (Powell et al., 
2013). For generative causes, competition was observed 
only in the first block (of 44 trials); for preventive causes, it 
persisted across three blocks of 40 trials each. The model 
with SS priors predicted that the competition effect for 
preventive causes would persist but diminish across three 
blocks. 

The greater persistence of generic priors in the 
preventive case might reflect the greater cognitive load 
imposed by a causal model in which polarity of multiple 
causes is uncertain. Perhaps some participants coped with 
this complexity by performing model selection (Griffiths & 
Tenenbaum, 2005) early on, thereby simplifying their causal 
model. In particular, if the B cause was sometimes dropped 
from the model in the weak-B condition (i.e., participants 
decided weak B was not a cause at all), this could account 
for why competition was persistent (A would always have 
an advantage if B was dropped, thus favoring A in the 
weak-B condition relative to the strong-B condition), and 
also why the judged strength of the weak B cue tended 
towards 0, rather than its true value of −.25. This hypothesis 
could be tested by adding an explicit non-causal response 
option for each cause (e.g., “vegetable B is not a cause”). 

Our findings thus highlight the need for further work on 
causal learning in complex, multi-causal setups with mixed 
causal polarities. 
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  Cause A  Cause B  Cause C 
  Block	
    Block	
    Block	
  
  1	
   2	
   3	
    1	
   2	
   3	
    1	
   2	
   3	
  

Human Data	
   Weak-B	
   −.52 −.49 −.51  −.33 −.13 −.03  .72 .75	
   .71	
  
Strong-B −.38 −.31 −.38  −.58 −.59 −.57  .73 .70 .68 

SS Prior Weak-B	
   −.44 −.47 −.49  −.13 −.16 −.18  .75	
   .77	
   .77	
  
Strong-B −.31 −.39 −.43  −.73 −.75 −.75  .75 .77 .78 

Uniform Prior Weak-B	
   −.44 −.47 −.48  −.13 −.19 −.21  .72	
   .75	
   .77	
  
Strong-B −.42 −.46 −.47  −.67 −.71 −.72  .72 .76 .77 

             
             

Table 2. Observed strength ratings for human participants and predicted values based on SS priors and uniform priors. 
Positive values represent generative strength ratings; negative values represent preventive strength ratings. Individual 
columns present ratings and estimates from each learning block (1, 2, or 3) for each cause (A, B, or C).  
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