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Abstract

Two key research issues in the field of causal learning are how people acquire causal knowl-

edge when observing data that are presented sequentially, and the level of abstraction at which

learning takes place. Does sequential causal learning solely involve the acquisition of specific

cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent

empirical studies have revealed that experience with one set of causal cues can dramatically alter

subsequent learning and performance with entirely different cues, suggesting that learning involves

abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal

cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal

learning phenomena such as forward and backward blocking. To account for these effects, we pro-

pose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to

consider and use several alternative causal generative models, each instantiating a different causal

integration rule. Model selection is used to decide which integration rule to use in a given learning

environment in order to infer causal knowledge from sequential data. Detailed computer simula-

tions demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., bin-

ary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a

variety of blocking and overshadowing paradigms. When the nature of the outcome variable is

ambiguous, humans select the model that yields the best fit with the recent environment, and then

apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence,

the theory can account for a range of phenomena in sequential causal learning, including various

blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer

of causal knowledge.
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1. Introduction

The study of causality has traditionally been a central topic in philosophy, where cau-

sality has even been dubbed the “cement of the universe” (Mackie, 1974). In the past

quarter century, researchers in the fields of human and animal cognition have built com-

putational theories of how various intelligent organisms, ranging from rats to humans,

can acquire knowledge about cause-effect relations. This work has been guided in part by

advances in the application of probabilistic Bayesian models to account for causal learn-

ing (Griffiths & Tenenbaum, 2005, 2009; Holyoak, Lee, & Lu, 2010; Lu, Yuille, Lilje-

holm, Cheng, & Holyoak, 2006, 2008a; for a review see Holyoak & Cheng, 2011).

However, most theoretical work on human causal learning has focused on the induction

of causal knowledge from summary data—situations in which all causal observations are

presented simultaneously and processed at once. In real life, observers must often cope

with data that are presented sequentially, making interim decisions that are subject to

revision as additional data become available.

Studies of human performance on sequential data, as well as conditioning experiments

with rats and other non-human animals (which by necessity involve sequential data),

show that the order of data presentation can dramatically influence causal learning. An

example is the classic blocking effect: learning that cue A alone repeatedly produces an

outcome or effect (represented as A+ training) that reduces the perceived causal efficacy

of a second, redundant cue X that is compounded with A and repeatedly paired with a

positive outcome (AX+ trials). Blocking can be obtained either in the forward direction,

A+ trials followed by AX+ trials (Dickinson, Shanks, & Evenden, 1984; Kamin, 1969;

Vandorpe & De Houwer, 2005), or in the backward direction, A+ trials preceded by AX+
trials (De Houwer, Beckers, & Glautier, 2002; Miller & Matute, 1996; Shanks, 1985; So-

bel, Tenenbaum, & Gopnik, 2004). However, the magnitude of the blocking effect often

differs between forward and backward experiments, indicating that learning of causal

knowledge can depend on the temporal order in which information is presented (also see

Danks & Schwartz, 2006; Dennis & Ahn, 2001).

The current paper presents a computational theory to account for a range of phe-

nomena in human sequential causal learning. The theory has two major components.

(1) A dynamic model based on a Bayesian framework is used to update causal briefs,

that is, the strength that a cause generates or prevents an effect, in a trial-by-trial

manner. This model deals with sequential data and enables the use of multiple causal

integration rules, each rule specifying a distinct way in which the influences of multi-

ple causes are combined to determine the outcome variable (i.e., their common effect).

(2) The theory introduces a learning mechanism that enables transfer of abstract cau-

sal knowledge from one situation to another even when the specific causal cues are
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entirely different (i.e., an account for abstract causal transfer). In other words, we

propose that individual causal inferences are not made in isolation. Instead, a causal

model is selected at an abstract level based on alternative integration rules; the

selected model will then be used to estimate the cause-effect relations relevant to sub-

sequent data.

In Section 2, we present an overview of the modeling issues that arise in sequential

causal learning. In Section 3, a Bayesian sequential-learning model is introduced that

allows the use of multiple causal integration rules. We focus on the key conceptual com-

ponents of the theory; mathematical derivations are provided in the Appendix, as are

details of the implementation used in our simulations. Section 4 reviews a set of experi-

mental findings with binary outcome variables, which compares model simulations with

different integration rules. We present simulation results showing that the proposed the-

ory, which includes a set of different causal generative models, accounts for a range of

blocking effects in the literature, and also provides an explanation of some important dif-

ferences in the performance of humans in sequential causal learning tasks as compared to

rats in conditioning paradigms. In Section 5, we review abstract transfer effects in causal

learning, and show how our framework can be extended to select between alternative cau-

sal models so as to account for such effects. In Section 6 we review empirical evidence

for primacy effects in causal learning (i.e., the phenomenon that final causal judgments

are often more strongly influenced by information presented early), extend the model by

allowing the learning rate to vary over time, and report simulation results that account for

the qualitative trend of this phenomenon. Section 7 provides a summary and general dis-

cussion. In the present paper, all empirical studies presented sequential data in a trial-by-

trial display.

2. Overview of modeling issues in sequential causal learning

2.1. Causal integration rules for causal learning

Causal influence from an individual cue can be measured as causal power (Cheng,

1997), the probability with which this cue actually causes an effect. When multiple

causes co-occur with the effect, causal integration rules are needed to combine causal

powers from individual cues to determine the probability of the occurrence of the effect.

Research on causal learning has yielded evidence that humans are able to learn multiple

causal integration rules (Lucas & Griffiths, 2010; Waldmann, 2007; see also Griffiths &

Tenenbaum, 2009). Although ample evidence supports the existence of multiple causal

integration rules in reasoning, computational models have primarily focused on causal

learning in experiments where contingency data are presented in a summary format. For

modeling sequential causal learning, a coherent framework is needed to incorporate dif-

ferent integration rules. We first review different causal integration rules in the literature,

and Section 3 will present a framework that enables sequential causal learning with dif-

ferent integration rules. The present paper considers three alternative rules to integrate the
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causal influences of multiple cues in generating the effect (see Table 1): the linear-sum
rule (Dayan & Kakade, 2000; Rescorla & Wagner, 1972), the noisy-or rule (Cheng,

1997; Pearl, 1988), and the noisy-max rule (Diez, 1993; Henrion, 1987; Pradhan, Provan,

Middleton, & Henrion, 1994).

Research on human causal learning has largely focused on the linear-sum and noisy-or

integration rules. The linear-sum rule assumes that causal influences from individual cues

are combined in a linear, additive fashion to determine the outcome. This integration rule

is appropriate for continuous outcome variables when the influences of multiple causes

simply summate to yield the value of the outcome (Rescorla & Wagner, 1972). This

might be the case, for example, when the outcome variable is the amount of a food

reward. However, for situations when the outcome variable is binary-valued (e.g., a fixed

reward is either received or not with some probability), Cheng (1997) showed that the

noisy-or rule (rather than linear-sum) is the appropriate integration function under the

assumption that causal influences are independent (see also Kim & Pearl, 1983; Pearl,

1988). Empirical tests (most of which have used binary outcome variables) have shown

that, in general, human causal judgments are better predicted by adopting the noisy-or

rule to estimate causal power (Buehner, Cheng, & Clifford, 2003).

The noisy-max rule has received less attention in the psychological literature than the

other two rules, but it has been used in work on artificial intelligence (Diez, 1993; Henri-

on, 1987; Pradhan et al., 1994). Conceptually, this rule acts as a kind of compromise

between the noisy-or and linear-sum: Like the latter, it operates on continuous outcome

variables, but like the former it is a non-linear function, with the strongest causes having

disproportionate impact on the outcome. An example of using the analogous noisy-max is

the rule in bicycle race: The winner of the team competition in the Tour de France bicy-

cle race is determined by the performance of the best three of nine team members. In one

limiting case (the deterministic max), the strongest cause is the only one that matters.

The noisy-max can be viewed as a generalization of the noisy-or rule for continuous vari-

ables, as the max and or functions are equivalent for binary variables. Like noisy-or, the

noisy-max rule tends to attribute the effect primarily to the cue with maximum causal

power. In previous work, we showed that causal models with the noisy-max rule yield

similar simulation results as do models with the noisy-or rule for causal learning with

binary outcome variables, suggesting a close correspondence between the two integration

rules (Lu, Rojas, Beckers, & Yuille, 2008b). The Appendix A provides details of how a

generative causal function with hidden variables is employed to derive the three integra-

tion rules, the linear-sum, the noisy-or rule, and the noisy-max rule. Table 1 summarizes

the similarities and differences among the three integration rules.

2.2. Overview of models of sequential causal learning

To account for human sequential causal learning, a successful computational model

must be able to update knowledge of cause-effect relations by integrating new observa-

tions with earlier beliefs.1 The best-known model of sequential causal learning is the

Rescorla–Wagner model, originally proposed as a model of animal conditioning
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(Rescorla & Wagner, 1972), and later applied to human causal learning (Rescorla,

1988; Shanks & Dickinson, 1988). The Rescorla–Wagner model uses the linear-sum

integration rule to update associative weights on cue-outcome links incrementally on

each learning trial based on assessments of prediction error. The model provides a natu-

ral account of many competitive effects observed in causal learning, and also of the

graded learning curve for acquiring knowledge of causal strength. Moreover, the basic

notion that prediction errors guide incremental learning is consistent with evidence con-

cerning the phasic activation of the dopamine and possibly the serotonin neurotransmit-

ter systems during learning (Daw, Courville, & Dayan, 2008; Montague, Dayan, &

Sejnowski, 1996; Yu & Dayan, 2005).

Table 1

Summary of alternative causal integration rules

Causal Integration Rules Linear-sum Noisy-or Noisy-max

Outcome (also termed

as Effect)

Continuous variables Binary variables Continuous variables

Causal graphs Cs

represent the presence

of cues, the xs indicate
the causal weights, and

Es represent hidden states,

which are influenced

directly by the cues and

their associated causal

weights. The Es are

combined by the different

integration rules to

generate the outcome (O).

Outcome (O) 

 
 

E1 E2 

 
 
C1 C2 

+ 

ω2 ω1 

Outcome (O) 

 
 

E1 E2 

 
 
C1 C2 

Noisy-OR 

ω2 ω1 

Outcome (O) 

 
 

E1 E2 

 
 
C1 C2 

Noisy-MAX 

ω2 ω1 

Combination of causal

influences(n indicates

noise)

O = E1 + E2 + n
O ¼ 1; if E1 ¼ 1

_ E2 ¼ 1

O ¼ E1

eE1=T

eE1=T þ eE2=T

þ E2

eE2=T

eE1=T þ eE2=T
þ n

Adopted by causal theories

in the literature

Most associative

models (e.g.,

Rescorla–Wagner

model, 1972)

Power PC

theory (Cheng,

1997); Noisy-or

model (Kim &

Pearl, 1983;

Pearl, 1988)

Generalized noisy-or

gate (Diez, 1993;

Henrion, 1987);

Knowledge engineering

(Pradhan et al., 1994)

Key assumptions Causal influences

are additive in

determining the

effect

Causal influences

are independent

in determining

the effect

The cue with maximum

causal power produces

primary influence on

the effect

Predictions for

sequential data

Forward blocking

effect

Strong Weak Weak

Difference between

forward and

backward blocking

Large Small Small
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However, despite its attractive features, the Rescorla–Wagner model faces a number of

severe difficulties. First, it is unable to account for retroactive effects on strength judg-

ments, such as backward blocking effects (De Houwer, Beckers, & Glautier, 2002;

Shanks, 1985). Second, the model does not provide an account of how people (or ani-

mals) code uncertainty of causal strength estimates. For example, the model cannot distin-

guish between lack of knowledge about the causal efficacy of a cue and certainty that the

cue is ineffective, as both situations will yield a strength estimate of zero (Holyoak &

Cheng, 2011).

A more sophisticated sequential model was developed by Dayan and his col-

leagues (Daw et al., 2007; Dayan & Kakade, 2000; Dayan, Kakade, & Montague,

2000; Dayan & Long, 1998). This probabilistic model accommodates the learner’s

uncertainty by updating full probability distributions of causal strengths, rather than

simply point estimates. Within a Bayesian framework, this model is able to handle

retroactive effects and influences of trial order, such as differences between forward

versus backward blocking, which are beyond the capacity of the Rescorla–Wagner

model.

However, problems arise in extending the model to human causal learning, especially

with binary outcome variables. The sequential model developed by Dayan and colleagues

(Dayan & Kakade, 2000) assumes a particular integration rule, the linear-sum, according

to which the net influence of multiple causes on their common effect is simply the addi-

tive sum of their individual influences. The choice of the linear-sum rule was partly moti-

vated by computational convenience. When the distributions of key parameters, such as

causal weights, are assumed to follow Gaussian distributions, the linear-sum rule enables

incremental updating with analytic solutions implemented by a Kalman filter, a technique

adopted from engineering applications (Anderson & Moore, 1979; Kalman, 1960; Mein-

hold & Singpurwalla, 1983). In this case, the model implementation is easy for just

updating the means and variances of the posterior distributions. But as Daw et al. (2008,

p. 430) recognize, “the Gaussian form of the output model. . . is only appropriate in rather

special circumstances. . . . For instance, if the outcome is binary rather than continuous,

as in many human experiments, it cannot be true.” Hence, a computational framework is

needed to incorporate different causal integration rules for inferring the cause-effect rela-

tions from sequential data.

3. A Bayesian sequential model with alternative integration rules

We propose a computational theory including a sequential model to incorporate multi-

ple causal integration rules for inferring cause-effect relations, and a model selection pro-

cedure to choose appropriate causal integration rules for subsequent inferences. As noted

earlier, the theory proposed in the present paper incorporates three alternative rules for

integrating the causal influences of multiple cues in generating an outcome: the linear-

sum, noisy-or, and noisy-max rules (see Table 1). Given a specific causal integration rule,

Bayesian sequential learning updates the probability distribution of the causal weights
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over time. Each update depends on all the data D up to time t, defined as Dt. The cues x
correspond to binary values indicating the presence or absence of cues, whereas the out-

come O can take either binary or continuous values. As illustrated in Fig. 1, under a cau-

sal generative model (m) based on a specific integration rule, the distribution of causal

weights, x, is updated with two steps applied iteratively (Ho & Lee, 1964; Liu, 2001;

Meinhold & Singpurwalla, 1983) (a) at time t, a prediction step infers an expected distri-

bution of causal weights in the next trial; and (b) at time t + 1 with observed data Dt+1,

a correction step applies Bayes rule to update the distribution of causal weights by com-

bining the prediction and the new data:

Pðx!tþ1jDt;mÞ ¼
Z

dx!t
Pðx!tþ1jx!tÞPðx!tjDt;mÞ;

Pðx!tþ1jDtþ1;mÞ ¼ PðDtþ1jx!tþ1
;mÞPðx!tþ1jDt;mÞ

PðDtþ1jDt;mÞ

The proposed Bayesian sequential-learning model is driven by prediction errors and

uncertainty over time. For example, if a sequence of observations indicates that eating

a fruit and breaking out in a rash co-occur (i.e., A+ trials), then the model would pre-

dict that the probability of a rash will be higher after eating the fruit. If the observation

on the next trial is consistent with the prediction, the peak of the probability distribu-

tion of causal weights will shift toward greater values of causal strength, and the vari-

ance of estimated causal weights will decrease to indicate more certainty. However, if

the observation on the sixth trial disagrees with the prediction, the peak of the distribu-

tion would shift toward lower causal weights, and the associated variance would

increase.

The Bayesian sequential-learning model provides a way for solving the sequential

parameter-updating problem for any form of causal integration rule. A special case of a

Bayesian sequential-learning model is the Kalman filter approach used by Dayan et al.

(2000), in which the likelihood function of the sequential model is defined by Gaussian

distributions and the linear-sum rule for causal integration. The general Bayesian sequen-

tial-learning approach adopted here overcomes this restriction, thereby allowing our the-

ory to model the full range of integration rules relevant to human causal learning.

Because there is no analytic solution for a Bayesian sequential-learning model when

adopting non-Gaussian distributions for the likelihood function and using causal integra-

tion rules other than the linear-sum, we implemented the model using particle filters (see

Supporting Material S1). This technique of particle filters ensures that the core computa-

tions required by our theory (i.e., parameter estimation, model selection, and model aver-

aging) can be performed by local operations, and hence might be implemented by

populations of neurons (Burgi, Yuille, & Grzywacz, 2000). Moreover, the use of particle

filters provides a potential way to study the robustness of the model—that is, to evaluate

how its performance would be affected by small inaccuracies in the model or degrada-

tions due to limited neuronal resources during computation, which can be modeled by
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reducing the number of particles (Brown & Steyvers, 2009; Courville & Daw, 2008; San-

born, Griffiths, & Navarro, 2010). In the Supporting Material S1, we present simulations

demonstrating how the number of particles can influence inference results. The number

of particles does not affect model performance very much unless the number is quite

small.

4. Simulation results for blocking paradigms

4.1. Overview of empirical findings for human and non-human learners

Over the past three decades, researchers in both animal conditioning and human causal

learning have identified significant parallels between these two fields. It has even been

suggested that rats in conditioning paradigms learn to relate cues to outcomes in a

Fig. 1. An illustration of the Bayesian sequential model. Top panel: the sequential data. Middle panel: the

sequential structure of the model, in which hidden parameters (causal weights) change over time to generate

the observed data. Bottom panel: the Bayesian sequential model updates the probability distribution of the

weights based on prediction and correction steps.
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manner similar to the way a scientist learns the cause-effect relations (Rescorla, 1988).

At the same time, there have been strong disagreements about the theoretical basis for

both human causal learning and animal conditioning. One traditional blocking procedure,

forward blocking, can serve as an example of a paradigm in which it is possible to com-

pare the performance of non-human and human learners. In the forward blocking para-

digm, the experimental group is presented with a number of A+ trials (i.e., cue A

coupled with an outcome) in an initial learning phase, whereas the control group is not

exposed to these pairings. Then in a second learning phase, both groups are presented

with AX+ trials (i.e., cue A and cue X presented together and coupled with the outcome).

The common finding from animal conditioning studies is that in the experimental condi-

tion cue X is identified as clearly non-causal, as evidenced by much weaker responses to

cue X in the experimental group than in a control group (Kamin, 1969). Near-complete

forward blocking has been demonstrated with non-human animals across a wide variety

of procedures and species (Good & Macphail, 1994; Kamin, 1969; Kehoe, Schreurs, &

Amodei, 1981; Merchant & Moore, 1973). This blocking effect has had a profound influ-

ence on contemporary associative learning theory (Dickinson et al., 1984; Mackintosh,

1975; Pearce & Hall, 1980; Rescorla, 1988; Sutherland & Mackintosh, 1971; Wasserman

& Berglan, 1998).

When forward blocking is used in experiments on human causal learning, the blocking

effect is sometimes observed, but its magnitude is more heterogeneous. Some studies

have reported robust forward blocking effects in humans (e.g., Arcediano, Matute, &

Miller, 1997; Dickinson et al., 1984; Shanks, 1985), leading many investigators to infer

that human causal learning may be based on the same associative processes argued to

underlie animal conditioning. However, other studies of human causal learning have

yielded blocking effects that were relatively weak (i.e., partial rather than complete block-

ing), or even failures to obtain this effect (Glautier, 2002; Lovibond, Siddle, & Bond,

1988; Vandorpe & De Houwer, 2005; Waldmann & Holyoak, 1992). In the next subsec-

tion, we present simulation results to explain the paradoxical findings in human causal

learning.

4.2. Simulation results

Our simulations are based on two studies of human causal learning, by Vandorpe and

De Houwer (2005; see Table 2) and Wasserman and Berglan (1998; see Table 3). Both

studies report detailed data on the causal ratings as a measure of estimated causal weights

for individual cues. Importantly, the cover stories in these studies made it clear that the

causal outcome was a binary variable, with observers being asked to identify whether

foods lead to an allergic reaction or not. Here, we apply our model to these blocking par-

adigms by comparing predictions based on two alternative generative functions, linear-

sum or noisy-or. Both integration rules have been used in the literature to account for

blocking effects in sequential causal learning (i.e., Carroll, Cheng, & Lu, 2013; Dayan &

Kakade, 2000; Rescorla & Wagner, 1972).

412 H. Lu et al. / Cognitive Science 40 (2016)



Fig. 2 shows the predicted mean weights of each cue as a function of the training trials

in a forward blocking paradigm based on the noisy-or rule and the linear-sum rule. The

design by Vandorpe and De Houwer (2005) includes six A+ trials, followed by six AX+
trials. Human final causal ratings are indicated by the asterisks in Fig. 2. In stage 1 with

six A+ trials, simulations using both the linear-sum rule (right panel in Fig. 2) and the

noisy-or rule (left panel) capture the gradual increase in estimated causal strength for cue

A as the number of observations increases. However, after six AX+ trials in stage 2, the

models with different integration rules generate distinct predictions.

We will first provide an intuitive account for the predictions from the linear-sum and

noisy-or integration rules, and then present the detailed simulation results. After the initial

six A+ trials, a strong association between cue A and the outcome will be established.

After then observing the co-occurrence of cues A and X in the presence of the outcome

(i.e., six AX+ trials), an observer adopting the linear-sum rule would infer that the

strength of X is approximately zero, because the outcome occurs no more often when cue

X is added than when cue A alone is operating. In contrast, an observer adopting the

noisy-or rule would be sensitive to the fact that the strong cause A creates a ceiling

effect, so that any impact of X on the occurrence of the outcome could not be observed.

Because cue A approximates a deterministic cause, the causal strength of the paired cue

X could take on any value between 0 and 1, leading to an expected value of 0.5.

Table 2

Experimental design and simulation results for Vandorpe and De Houwer (2005)

Paradigms

Stage 1

6 Trials

Stage 2

6 Trials Test Human Rating

Model Prediction

Noisy-or Linear-sum

Forward blocking A+ AX+ A 9.9 8.8 9.8

X 5.0 5 1.3
Reduced overshadowing A- AX+ A 1.2 2.5 5.2

X 9.4 8.8 5.8
Control AX+ A 5.4 4.3 5.6

X 5.6 4.4 5.4

Note. Rating scale: 1–10; human data for blocked cue X in bold.

Table 3

Experimental design and simulation results for Wasserman and Berglan (2010)

Paradigms

Stage 1

30 Trials

Stage 2

30 Trials Test Human Rating

Model Prediction

Noisy-or Linear-sum

Backward blocking AX+ A+ A 8.81 8.5 9.0

X 4.75 5.2 1.7
Recovery from overshadowing AX+ A- A 1.35 1.5 1.0

X 6.81 7.0 8.4

Note. Rating scale: 1–9; human data for blocked cue X in bold.
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As shown in Fig. 2, the simulation with the linear-sum rule indeed yields near-com-

plete forward blocking (i.e., the predicted causal weight for cue X approaches the lowest

possible rating, indicating the absence of a causal relation between cue X and the out-

come). In contrast, the model with the noisy-or rule predicts no blocking effect here, as

the predicted causal weight for cue X is similar to the predicted weight in the control

condition, consistent with the human ratings observed by Vandorpe and De Houwer

(2005). Our simulations thus indicate that the noisy-or rule provides a better account of

forward blocking in a paradigm involving binary variables for human causal learning.

To examine whether the Bayesian sequential model can capture other blocking effects

observed in the literature, we simulated three additional experiments, and a control condi-

tion, from studies by Vandorpe and De Houwer (2005) and Wasserman and Berglan

(1998). As shown in Tables 2 and 3, the basic difference between the forward blocking

and the backward blocking paradigms is that the order of the two stages is reversed (i.e.,

whereas in forward blocking A+ trials are followed by AX+ trials, in backward blocking

A+ trials precede AX+ trials).

In human causal learning, an analogous reversal of order occurs in related paradigms

originally developed in the field of animal learning. “Overshadowing” is similar to block-

ing in that two cues, A and X, are paired (i.e., AX+), but (unlike the blocking paradigm)

neither cue is ever shown alone paired with a positive outcome. Typically, the two cues

overshadow each other to result in an intermediate level of causal strength for each cue.

Two important variants are “reduced overshadowing” (A- trials followed by AX+ trials),
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Fig. 2. Model simulations of mean causal weights of each cue as a function of the number of training trials in a

forward blocking paradigm (six A+ trials followed by six AX+ trials). The asterisks indicate the human causal

rating for the target cue X reported by Vandorpe and De Houwer (2005). Left: model simulation with the noisy-

or generative function; Right: model simulation with the linear-sum generative function. The black solid lines

show the predicted weights for the target cue X; the gray dashed lines show the predicted weights for the cue A.

414 H. Lu et al. / Cognitive Science 40 (2016)



which results in judging cue A as a weak cause and cue X as a strong cause, that is, less

overshadowing for X; and “recovery from overshadowing,” which simply reverses the

order of presentation so that the A- trials follow the AX+ trials (i.e., AX+ trials followed

by A- trials), resulting in a retroactive reduction in overshadowing of X.

As shown in Fig. 3 (top), human participants showed substantially different patterns

of causal ratings for the A and X cues for different blocking paradigms. These differ-

ences are captured well by the model based on the noisy-or function (middle), which

yields a very high correlation (.97) and low root-mean-square deviation (RMSE = 0.80)

between model predictions and human performance across all experiments, blocking

paradigms and cues. In contrast, the model results, based on the linear-sum rule (bottom

in Fig. 3), produce a poorer fit, with lower correlation r = .72, and higher

RMSE = 2.41. Our simulation results, thus, strongly favor the interpretation that humans

typically apply the noisy-or rule in causal sequential learning when inferring cause-

effect relations based on binary outcomes. Hence, the simulation results from the

sequential data are consistent with the computational account for summary data from

the Power PC theory, which predicts that when the outcome is a binary variable, the

noisy-or rule is normatively more appropriate than the linear-sum rule for modeling

these learning situations (Cheng, 1997).

4.3. Results and discussion

As noted earlier, in animal conditioning experiments, the main finding is that rats

and other non-human animals more commonly show a blocking effect in the forward

paradigm than in the backward paradigm (Balleine, Espinet, & Gonzalez, 2005; Dennis-

ton, Miller, & Matute, 1996; Miller & Matute, 1996). In contrast, the human causal rat-

ings obtained by Vandorpe and De Houwer (2005) and Wasserman and Berglan (1998)

do not show a difference in blocking across the two directions for the target cue X (5.0

on a 1–10 rating scale for the forward blocking paradigm in Vandorpe & De Houwer,

2005; and 4.75 on a 1–9 rating scale for the backward blocking paradigm in Wasser-

man & Berglan, 1998). In the first study testing backward blocking in humans, Shanks

(1985) noted that the observed magnitude of the blocking effect was comparable for

both forward and backward paradigms (tested within a single experiment). As shown in

Fig. 4 (middle), the simulation using the noisy-or rule predicts only a small difference

between the forward and backward paradigms for the target cue X, consistent with the

pattern in the human data, whereas the simulation with the linear-sum rule (bottom)

predicts a considerably stronger blocking effect in the forward than in backward para-

digm. Thus, while the prediction based on the noisy-or rule more closely matches the

results for these studies of human causal learning, the prediction based on the linear-

sum rule is broadly consistent with findings from the literature on conditioning with

non-human animals.

Our simulation results thus provide an account of why forward blocking is less pro-

nounced in human causal learning than in animal conditioning. It appears that in sequen-
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tial causal learning, humans are able to identify whether the outcome variable is binary

or continuous and then select an appropriate causal integration rule depending on the

perceived property of outcome variables. When the outcome variable is binary (i.e., true

vs. false, present vs. absent), humans readily adopt the noisy-or rule (the normative causal

integration function for binary outcome variables; Cheng, 1997; Pearl, 1988). When the
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Fig. 3. Comparison of human causal ratings with model predictions for five experimental paradigms. Humans

(top) show different blocking effects in different paradigms. Note that human ratings have been linearly

transformed to the same scale range of [1, 10] for all five studies. These differences are well captured by

the model based on the noisy-or function (middle), but less so by the model based on the linear-sum rule

(bottom).
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outcome variable is perceived as continuous, humans show a pattern consistent with use

of the linear-sum rule.

The present simulation results are in agreement with the empirical findings of Mitchell

and Lovibond (2002), who conducted experiments to identify conditions that influence

the magnitude of the forward-blocking effect in human causal learning. Their results indi-

cated that the magnitude of the blocking effect depends on certain characteristics of the

outcome variable. Specifically, these investigators obtained a strong blocking effect when

human participants were instructed that the outcome variable was continuous, so that par-

ticipants tend to expect that the net influence of two cues on the magnitude of the effect

would be additive. In contrast, when human observers were instructed that the outcome

was a binary variable (i.e., either present or absent), the blocking effect was much

weaker. Our model provides a computational account of how an abstract property of the

outcome variable (continuity vs. discreteness) could modulate the robustness of forward-

blocking effects for humans.

By contrast, in conditioning paradigms used with rats and other non-human animals,

the outcome may typically be treated as continuous (e.g., reward can vary continuously

in magnitude and/or rate of occurrence; see Gallistel & Gibbon, 2000). Accordingly,

non-human animals may adopt the linear-sum rule as a default model, in essence add-

ing up the causal influences from individual cues to estimate their net impact on the

outcome variable. Our analysis thus clarifies both the commonalities and differences

between human causal learning and animal conditioning. Recent work has begun to

explore transfer to novel cues with animals (Beckers, Miller, De Houwer, & Urushiha-

ra, 2006; Wheeler, Beckers, & Miller, 2008). Further experimental work should investi-

gate whether non-human animals have the ability to distinguish outcomes as binary

variables (i.e., presence vs. absence of the footshock) from outcomes as continuous

variables (e.g., the duration or strength of the footshock); and if they can, whether ani-

mals can flexibly switch to the noisy-or rule for binary variables when inferring cause-

effect relations.

5. Simulation of abstract transfer effects in sequential causal learning

5.1. Overview of empirical results

The simulations reported in Section 4 suggest that humans may be able to select causal

integration rules based on the general characteristics of outcome variables, preferentially

using the noisy-or rule when the outcome variable is perceived as binary, but using the

linear-sum rule when the outcome is perceived as continuous. Yet more remarkably,

recent empirical evidence indicates that humans use more sophisticated selection mecha-

nisms to choose between alternative learning rules when the nature of the outcome vari-

able is ambiguous. In particular, researchers find that humans (Beckers, De Houwer,

Pine~no, & Miller, 2005; Shanks & Darby, 1998) and perhaps rats (Beckers et al., 2006)

have the ability to acquire and transfer abstract causal knowledge in situations where the
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specific cues are changed between training and the transfer test. Beckers et al. (2005,

2006; also see Vandorpe, De Houwer, & Beckers, 2007; Lovibond, Been, Mitchell, Bou-

ton, & Frohardt, 2003; Wheeler et al., 2008) showed that different pre-training conditions

using unrelated cues could prevent or promote the occurrence of forward and backward

blocking for target cues. As an everyday example of this sort of abstract transfer, if a per-

son learns that a cooking competition in which each contestant prepares several dishes

has been won by the chef who prepared the single best dish (rather than a rival who pre-

pared better dishes on average), this experience might carry-over to create an expectation

about how the winner would be determined in a singing contest. Such abstract transfer

effects, in which learning about one set of cause-effect relations alters the learning of

another set of relations based on entirely different stimuli, pose a serious challenge to all

current formal models of sequential causal learning. In the absence of any systematic

overlap of features between the cues in different situations, previous models in sequential

causal learning are unable to account for abstract transfer effects. In the next section, we

will present simulation results to explain abstract transfer effects observed in human

causal learning.

To account for these phenomena occurred when the causal cues differ between block-

ing training and pre/post-training, we assume that the observed transfer occurs at an

abstract level based on the degree of evidence favoring different causal integration rules.

The key idea is that people can flexibly select the particular integration rule that is most

successful in explaining recent sequentially presented observations. If new causal cues

are then introduced in close temporal proximity, the causal model that “won” in the ini-

tial training phase will also be favored in interpreting further sequential data. The selected

integration rule will then be applied in subsequent causal inference even with different
cues, resulting in abstract transfer of causal patterns so as to alter the magnitude of block-

ing effects in the subsequent learning phase.

Within this framework, an explanation can be provided for abstract transfer effects,

which show that causal inference depends strongly on its temporal context (i.e., infor-

mation provided shortly before or after some critical event). Suppose that a subject is

exposed to pre-training data before observing new data. The subject evaluates the evi-

dence to find the best causal generative model with a specific integration rule to explain

the observations. The subject then proceeds to use the selected causal integration rule to

make subsequent inferences with new data without evaluating the other causal rules, as

long as the subsequent experimental trials do not evoke any strong bias to alternative

causal models. The subject thus uses the procedure of model selection to enable knowl-

edge transfer from the pre-training data to help interpret subsequent observations in a

new context.

This computational framework can be readily extended to account for a related type

of abstract causal transfer, produced by post-training (Beckers et al., 2005). In this sce-

nario, learners first observe the occurrence of cues and outcomes for one set of data.

The contingencies are such that this data can be equally well explained by the linear-

sum and noisy-max rules, making it impossible to confidently select one of the two alter-

native models. To cope with this situation, we hypothesize that the learner (at least for a
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human—post-training effects have not been tested with other animals) will often main-

tain both models. Although maintaining two alternative models would presumably

impose an extra burden on working memory, there is evidence from other reasoning

paradigms that adult humans are capable of keeping two models in mind (e.g., Johnson-

Laird, 2001). Learners are then exposed to post-training data with different cues, for

which the contingencies unambiguously favor one of the two alternative integration

rules. Our model postulates that the unambiguous post-training can be used to (retroac-

tively) weight the causal estimates from two models for the initial data set (which used

different cues), so that the model favored for the post-training data comes to retroac-

tively dominate (but not eliminate) its rival as an explanation of the initial data. This

type of post-training effect, which can be modeled by model averaging (Courville, Daw,

Gordon, & Touretzky, 2004), is an example of what is often termed “retroactive reevalu-

ation” of causal strength.

5.2. Simulation results

In this section, we report simulation results for two cases: (a) experiments that used a

pre-training design to show abstract transfer effects (Experiments 2 and 3 in Beckers

et al., 2005), and (b) experiments using a post-training design that demonstrate retrospec-

tive reevaluation (Experiment 4 in Beckers et al., 2005). Because the outcome variables

in these studies were continuous (degrees of allergic reaction), the model simulations are

based on the comparisons between two causal integration rules, linear-sum and noisy-

max.

5.2.1. Transfer effects with pre-training
Table 4 outlines an experimental design in which humans were given different types

of pre-training in Phase 1, followed by sessions of forward blocking (Experiment 2 in

Beckers et al., 2005) or backward blocking (Experiment 3 in Beckers et al., 2005). For

the additive conditions, Phase 1 consisted of trials in which individual food cues, G or

H, were paired with a moderate allergic reaction (indicated by +), and the combination

GH was paired with a strong allergic reaction (indicated by ++). This occurred prior to

the blocking session in Phases 2 and 3, in which different food cues, A and AX, were

paired with a moderate allergic reaction (indicated by +). The subadditive conditions

provided Phase 1 trials in which food cues G, H, and the combination GH were each

paired with a moderate allergic reaction (indicated by +). The blocking sessions (Phase 2

and 3) were identical for both additive and subadditive conditions. If we removed the

pre-training, the paradigms would be standard forward and backward blocking designs of

the sort to which we have applied our model (see Section 4). A critical design feature

was that completely different cues were used in the pre-training Phase 1 (cues G, H)

and in Phases 2 and 3 (cues A, X). If there was no abstract transfer, we would expect

standard forward and backward blocking effects for the target X, regardless of which

pre-training conditions were included. Control cues K and L were only presented in

KL+ trials during Phase 3.
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After completing these three phases, participants were asked to rate how likely each

food cue separately would cause an allergic reaction. Human results (see Fig. 5, left

columns) showed that the target cue X was blocked after additive pre-training but not

after subadditive pre-training. More precisely, additive pre-training resulted in a lower

human rating for the target cue X than for the control cues, K and L, indicating a

strong blocking effect. By contrast, after subadditive pre-training there was little dif-

ference between the ratings for X, K and L, indicating the absence of a blocking

effect.

Our computational theory was tested by using the data in the pre-training phase (i.e.,

phase 1) to run the sequential models with the linear-sum and noisy-max integration

rules, and then using model selection to determine which causal model was more likely

for the two experimental conditions (additive vs. subadditive pre-training). As shown in

Fig. 4, the first two stages (8G+ and 8H+) did not distinguish between causal models
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Fig. 4. Log-likelihood ratios of model evidence for the noisy-max model relative to the linear-sum model in

the pre-training phase by Beckers et al. (2005). A positive ratio value supports a noisy-max model, and a nega-

tive value indicates that a linear-sum model provides better account to the observations. The model selection

procedure chooses the linear-sum model for the additive condition, but chooses the noisy-max model for the

subadditive condition. The error bars indicate the standard deviation based on 10 runs of simulations.

Table 4

Experimental design in pre-training paradigm (Beckers et al., 2005)

Experiment Group Phase 1: Pre-training Phase 2 Phase 3 Test

2 Additive 8G+/8H+/8GH++ 8A+ 8AX+/8KL+ A, X, K, L

Subadditive 8G+/8H+/8GH+ 8A+ 8AX+/8KL+ A, X, K, L

3 Additive 8G+/8H+/8GH++ 8AX+/8KL+ 8A+ A, X, K, L

Subadditive 8G+/8H+/8GH+ 8AX+/8KL+ 8A+ A, X, K, L

Note. A, X, K, L, G, and H are different food cues; + and ++ indicate moderate and strong allergic reac-

tions as outcome. The numerical values indicate the number of trials.
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adopting different integration rules, noisy-max and linear-sum, with the log ratio of model

evidence being close to 0. However, after the third stage of the pre-training trials

(8GH++ in the additive condition and 8GH+ in the subadditive condition), the log ratio

of model evidence clearly revealed greater support for the noisy-max model (i.e., greater

than 0) in the additive condition, and for the linear-sum model for the subadditive condi-

tion (indicated by a negative value of the log ratio).2

We then applied the selected models to the training data in Phases 2 and 3 to update

the distributions of causal weights for individual cues. To compare with human ratings,

we computed the mean weight for each cue with respect to the posterior distribution.

The right panels in Fig. 5 show that the mean weights, calculated using the selected

causal model, are in good agreement with human causal ratings. The linear-sum model

generates accurate predictions for the additive group: the mean weight for the target cue X

is much lower than weights for the control cues K and L, indicating blocking of causal

learning for cue X. In contrast, the noisy-max model gives accurate predictions for the su-

badditive group: the mean weight for cue X is slighter lower than the weights for the con-
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Fig. 5. Causal rating for each cue in pre-training studies in Beckers et al. (2005). Top panels: the results

from Experiment 2 in Beckers et al. (2005) with forward blocking paradigm in phase 2 and 3; bottom panels:

the results from Experiment 3 in Beckers et al. (2005) with backward blocking paradigm. Left, human causal

ratings to indicate how likely each food item would cause an allergic reaction. Black solid bars indicate the

mean ratings for the additive pre-training group, white bars for the subadditive pre-training group. Right,

model predicted ratings based on the selected model for each condition. Black solid bars indicate the mean

weight values predicted by the linear-sum model, which gives a good fit for the human ratings in the additive

group. White bars indicate the mean weight values based on the noisy-max model, which provides a better fit

to the human ratings for the subadditive group.
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trol cues K and L, consistent with a much weaker blocking effect for cue X in the subaddi-

tive group.

5.2.2. Transfer effects with post-training
We also applied our model to explain the impact of post-training on human causal

judgments. Experiment 4 reported by Beckers et al. (2005) showed that post-training (i.e.,

training with additional new stimuli after the target cues) is able to alter human judg-

ments about previously acquired cause-effect relations. As shown in Table 5, Phases 1

and 2 now correspond to a forward blocking training session, with cues A+ and AX+,
whereas Phase 3 is a post-training phase with different cues (i.e., cue G and H) paired

with severe or moderate outcomes (corresponding to additive and subadditive conditions,

respectively). After the post-training phase, human participants were asked to evaluate

the causal strength for individual cues (i.e., A and X). In other words, the design in the

post-training study is the same as for the pre-training study described earlier, but with a

different order of training phases. The experimental results (Beckers et al., 2005) show

that post-training (either additive or subadditive) impacts human causal ratings for cues,

despite being presented after the blocking training phases. The impact of post-training is

weaker than that of pre-training, but nevertheless significant as shown in Fig. 6 (left).

From a computational perspective, post-training differs from pre-training in that post-

training precludes model selection prior to the blocking session, because the data for the

initial training is inherently ambiguous between two rival integration rules (i.e., after

observing 8A+/8AX+ trials, the model evidence is equal for the linear-sum and the noise-

max models, making it impossible to select the single best model). It is plausible that the

subject therefore maintain two competing models (linear-sum and noisy-max) as possible

explanations of the data. However, after receiving the unambiguous post-training data

with different cues, the learner reassesses the estimates for the initial data, by taking into

consideration how well the alternative models could explain the post-training data in

Phase 3. In our simulations, the mean causal strengths based on each model were esti-

mated using observations in the first two training phases, and the final strengths are calcu-

lated by averaging the two estimates weighted by the probability of supports for each

model.

As shown in Fig. 6, human ratings for the critical cue (X) depend on whether participants

viewed the additive or subadditive conditions during the post-training phase (though the

magnitude of this abstract transfer effect was reduced relative to that obtained in the compa-

rable experiment using pre-training). The comparisons to human data in Fig. 6 show that

Table 5

Experimental design in post-training paradigm (Beckers et al., 2005)

Experiment Group Phase 1 Phase 2 Phase 3: Post-training Test

4 Additive 8A+ 8AX+/8KL+ 8G+/8H+/8GH++ A, X, K, L

Subadditive 8A+ 8AX+/8KL+ 8G+/8H+/8GH+ A, X, K, L

Note. A, X, K, L, G, and H are different food cues; + and ++ indicate moderate and strong allergic reac-

tions as outcome. The numerical values indicate the number of trials.
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model averaging qualitatively captures the impact of post-training, as exposure to additive

post-training yielded lower ratings for cue X than did exposure to subadditive post-training.

The experiments by Beckers et al. (2005) provide clear evidence of abstract transfer. The

pre-training phase provided sufficient evidence to favor one model over the other, whereas

such information was not available in the post-training design. Model selection, in which a

subject first selects the model with the highest evidence support, and then makes inferences

based on the parameters/functions of the selected model, involves less computation than

does model averaging. However, model selection requires clear evidence favoring one

“best” model over the alternatives. By contrast, model averaging requires more computation

(imposing additional working memory load), as it involves making inferences using multi-

ple candidate models. We expect that under speed pressure, or with manipulations that

increase working memory load, early selection of a single model will be preferred. This

selected model will then become the default unless later observations provide contradictory

evidence. Hence, the choice between model selection and model averaging is likely to

depend on both the strength of the evidence favoring the “best” model (with stronger evi-

dence favoring model selection), and on the availability of memory and processing

resources to track multiple models (with greater resources favoring model averaging).

6. Simulation of primacy effect in sequential causal learning

6.1. Overview of empirical results

It has long been known that the presentation order of stimuli can affect causal judg-

ments when observing data that are presented sequentially. However, two opposing types

of ordering effects have been observed. Some studies have reported a recency effect, in

which final causal beliefs are biased toward the information that is presented later

(Collins & Shanks, 2002; L�opez, Shanks, Almaraz, & Fern�andez, 1998). Other studies

have shown an opposite primacy effect, in which early presented information plays a
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more important role in determining the final causal judgments (Danks & Schwartz, 2006;

Dennis & Ahn, 2001). For example, Dennis and Ahn (2001) first showed participants a

sequence of 20 trials demonstrating a generative causal relationship between contact with

a plant (a candidate cause) and an allergic reaction (effect) (with p(allergy|plant) = 0.9

and p(allergy|no plant) = 0.1, consistent with causal power of 0.89), followed by a

sequence of 20 trials demonstrating a preventive causal relationship (with p(allergy|
plant) = 0.1 and p(allergy|no plant) = 0.9, consistent with a preventive causal power of

�0.89). We will refer to this as the “+/�” condition (i.e., trials consistent with symmetri-

cal generative and then preventive power). The other half of participants were assigned to

a �/+ condition with the reversed sequence order (i.e., trials indicating a preventive cause

followed by trials indicating a generative cause). Dennis and Ahn found that final ratings

of the causal relation between the plant and allergy was greater when the generative

cause was presented first (+/� condition) than when preventive cause was (�/+ condi-

tion) (see Fig. 7).

The recency effects observed in the above studies have been interpreted as providing

empirical evidence supporting sequential models based on prediction errors that involve

“tracking” the recent data in the sequence (i.e., the Rescorla–Wagner model). In contrast,

observations of primacy effects have been taken as evidence supporting the construction

of an explicit mental model (Dennis & Ahn, 2001). This model is formed using informa-

tion received at the beginning of a sequence; later information is discounted if it contra-

dicts the prediction of the established mental model. However, as Danks and Schwartz

(2006) have pointed out, a theory based on minimizing prediction errors can potentially

exhibit primacy effects if the learning rate, that is, how fast a subject can learn the causal
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Fig. 7. Human data and simulation results for the primacy effect reported in Experiment 1 of Dennis and

Ahn (2001). The primacy effect is demonstrated by the following results: the final causal judgment is positive

when the generative causal sequence is presented first in the +/� experimental condition, but negative when

the preventive causal sequence is presented first in the �/+ experimental condition. Error bars indicate stan-

dard deviation. For model results, the error bars were calculated based on 10 runs of simulations.
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relationship and is related to r2T in our model (see more details in Appendix B), is

assumed to vary over time. In fact, our sequential Bayesian model assumes for indepen-

dent reasons (see below) that the learning rate varies. In the following subsection, we

elaborate on this aspect of the model, presenting simulation results showing a primacy

effect in some experimental conditions.

6.2. Simulation results

Because the experiment reported by Dennis and Ahn (2001) clearly used an outcome

that was a binary variable (the allergic reaction was either present or absent), we applied

the noisy-or integration rule for generative causes and the corresponding noisy-and-not

rule for preventive causes (Cheng, 1997; Yuille & Lu, 2008). As in previous simulations

of causal learning (Griffiths & Tenenbaum, 2005; Lu et al., 2006, 2008a, 2008b), a back-

ground cause with positive causal power was included to generate an effect, so that a pre-

ventive cause can show its influence. The causal weight of the background cause was

assigned an initial uninformative prior following a uniform distribution between 0 and 1.

Because the cue (e.g., a plant in Dennis and Ahn’s study) can be generative or preven-

tive, the causal weight of the cue was constrained to the range of [�1,1], where the sign

indicates the causal direction, and the absolute value of the causal weight corresponds to

a probability, bounded within 0 and 1. The model using the noisy-or rule presented in

Section 4 assumes that the learning rate, corresponding to r2T , varies depending on the

value of the estimated causal weight. The varying learning rate parameter also helps keep

the sampled weight values within the theoretically determined bounds, because the abso-

lute values of the weights represent the probabilities. Specifically, when the causal weight

is estimated to have a mean with absolute value of 0.5, for which the uncertainty is larg-

est (due to the binomial distribution) in determining the occurrence of the effect, then the

model applies the maximum learning rate; in contrast, as the estimated weight approaches

a limit (i.e., the ceiling at absolute value 1 or the floor at 0), the learning rate is reduced

by a scaling factor. This scaling factor is calculated using a non-normalized Gaussian

function by comparing the estimated causal weight with a mean of 0.5 and standard devi-

ation of 0.1. Hence, the scaling factor follows a bell-curved shape so that the learning

rate is maximal when the causal weight is 0.5, and minimal when the causal weight is 0,

1 (generative) or �1 (preventive). Such variation in learning rate slows down the change

in causal weight over trials when the estimate is close to the ceiling (i.e., causal power is

close to 1 or �1).

Fig. 7 shows the human causal ratings and simulation results for Experiment 1

reported by Dennis and Ahn. The simulation results qualitatively account for the observed

primacy effect in human causal judgments (i.e., the final causal judgment was positive

when the generative causal sequence was presented first in the +/� experimental condi-

tion, but negative when the preventive causal sequence was presented first in the �/+
experimental condition). Nonetheless, there are differences between the pattern of human

ratings and the model predictions. In particular, an asymmetry is apparent in the human

ratings, which show a stronger primacy effect when the sequence with generative power
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was presented first than when the preventive power was encountered first. Dennis and

Ahn (2001) suggested that this asymmetry may be due to an inherent bias favoring gener-

ative over preventive cause. Our sequential causal model does not incorporate any prefer-

ence for a particular causal direction, and hence does not account for the observed

asymmetry.

In a second study showing primacy effects, Danks and Schwartz (2006) used a similar

design to investigate whether the primacy effect depends on the magnitude of causal

power. In conditions with strong causal strength, the presence of the cause (a plant) and

the effect (a rash) were arranged to yield a causal power of 0.89 (i.e., P(rash|plant) = 0.9,

P(rash|no plant) = 0.1); in the conditions with weak causal strength, the causal power

was 0.57 (e.g., P(rash|plant) = 0.7, P(rash|no plant) = 0.3); and the causal power was set

to 0.5 in the unbiased condition. As shown in the left plot of Fig. 8, mid-point ratings

(white bars in Fig. 8) after observing 20 trials were presented to show the learning in the

first half of the sequence, and final ratings (gray bars) after observing all 40 trials were

used to illustrate the presence of primacy effects. Significant primacy effects were found

in the strong +/� and weak �/+ conditions, in that final ratings were significantly differ-

ent from zero and biased toward the causal direction presented in the first half of the

sequence (see Fig. 8, left). Model simulations also yield primacy effects in the two strong

conditions, strong +/� and strong�/+. However, when the causal power is reduced, the

model does not reveal a primacy effect in either of the weak conditions. Thus, the mod-

el’s performance is highly dependent on values of causal power, and the model is more

sensitive to this manipulation than are human observers.

Although our sequential Bayesian model can yield a primacy effect under certain con-

ditions, the simulation results need to be interpreted in caution. One determinant in the

present sequential causal model is prediction errors, which tend to induce a recency effect

(as is the case for the Rescorla–Wagner model). However, the varying learning rate can
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instead yield a primacy effect under certain conditions. We suspect that at least two

learning strategies are involved in primacy effects. (a) Observers may use early evidence

to anchor a causal hypothesis. The observer then accepts later evidence if it confirms the

anchor hypothesis, but discounts the evidence if it is inconsistent with the anchor hypoth-

esis. (b) Standard sequential causal learning based on the correction of prediction errors

but allowing the learning rate change over time can also yield a primacy effect. Our sim-

ulation results confirm the possibility of the second strategy but do not reject the first. An

analysis of individual differences reported by Danks and Schwartz (2006) suggests that

these two strategies co-exist in human causal learning with sequential data. In addition,

the primacy effect observed in our simulation results is sensitive to the learning rate

parameter, suggesting an important factor that may contribute to individual differences. If

different observers use different learning rates, some would exhibit a primacy effect, but

others may show a recency effect.

7. General discussion

In the present paper, we have presented a new model of sequential causal learning,

implemented using particle filters. Our model is the first to combine computational mech-

anisms of rule transfer with sequential weight updating, and the first to explicitly compare

performance under three major integration rules (linear-sum, noisy-or, and noisy-max) in

sequential causal learning. The model incorporates key ideas exploited in previous work

(alternative integration rules, Bayesian sequential updating of strength distributions,

model selection, and model averaging), showing that these can work together to explain a

broad range of phenomena. The phenomena the model can account for include (a) order

effects in causal sequential learning, as exemplified by the difference in performance

associated with various blocking paradigms; (b) evidence that patterns of human causal

learning are influenced by their understanding of the nature of the outcome variable (in

particular, whether it takes on binary or continuous values); (c) evidence that in addition

to learning about specific causal cues, humans are able to transfer their acquired knowl-

edge to guide causal learning with entirely different cues; (d) evidence that in some

sequential-learning situations, final causal judgments can show a primacy effect, being

influenced more by information presented early in the sequence.

The key assumption of our computational model is that learners have available multi-

ple causal generative models, each reflecting a different integration rule for combining

the influence of multiple causes (Lucas & Griffiths, 2010; Waldmann, 2007). The evi-

dence that people are able to use multiple integration rules implies that an adequate

model of sequential causal learning must be more flexible than models based solely on

the linear-sum rule used in most existing models (the Rescorla–Wagner model, and the

Bayesian model developed by Dayan and his colleagues). As the present theory demon-

strates, sequential models can be based on alternative integration rules while maintaining

the basic idea that learning is guided by prediction errors. Yuille (2005, 2006) has

demonstrated mathematically that linear and non-linear variants of sequential-learning
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models can perform maximum likelihood estimation for a range of different integration

rules, and it has shown formally how Bayesian models at the computational level can be

related to algorithmic models of sequential causal learning.

Kruschke (2008) developed a sequential model using the noisy-or rule, and compared

its performance in several blocking paradigms with that of a model based on a Kalman

filter implementation of the linear-sum rule. This sequential model employed Bayes’ rule

to update the distribution of beliefs on causal weights on each trial by combining the esti-

mates of causal weights learned from previous trials with the data observed in the current

trial. However, Kruschke’s model does not incorporate model selection to choose among

alternative integration rules, and hence it provides no basis for explaining abstract causal

transfer. In addition, the model implemented by Kruschke disenabled the dynamic predic-

tion module in the Kalman filter implementation, which allows uncertainty of learned

causal weights to increase with the passage of time. Given that forgetting is an essential

component of a psychological model of causal learning, the absence of an account of for-

getting is a serious theoretical limitation. To overcome this limitation, we designed updat-

ing procedures implemented as particle filters. By applying iterative prediction and

correction steps, the parameters of the model can be updated as new data arrive using

prediction errors, for any causal integration rule.

The building blocks for our computational theory of sequential causal learning are

standard Bayesian procedures that have been used previously in theories of causal reason-

ing and animal conditioning: parameter estimation, model selection, and model averaging.

For example, Cheng’s (1997) power PC theory uses parameter estimation of the weights

of a noisy-or generative model to account for human performance in causal learning

tasks. Similarly, Daw et al. (2008) estimated the parameters of a linear-sum model to pre-

dict the performance of rats in conditioning experiments. Model selection has been pro-

posed to account for human performance when deciding whether a cue should or should

not be accepted as causal (Griffiths & Tenenbaum, 2005; also see Carroll et al., 2013).

Lucas and Griffiths (2010) developed a hierarchical model to explain how abstract causal

knowledge of the form of causal relations can influence human causal judgments, an

approach that is quite consistent with our emphasis on selection among alternative inte-

gration rules. Model averaging has also been used to account for phenomena related to

causal learning. For example, Courville et al. (2004) used model averaging to explain

how animals cope with uncertainties about contingencies in two conditioning paradigms

(second-order conditioning and conditioned inhibition).

Although the building blocks of the present model have been explored in the literature,

to our knowledge the present theory is the first to integrate these core theoretical elements

within a unified computational framework in order to explain a broad range of phenom-

ena that arise in human sequential causal learning. This model provides an explanation of

why patterns of human causal learning are similar to yet different from those observed in

studies of conditioning with non-human animals. In particular, humans readily adopt a

noisy-or integration rule when learning about binary-valued outcomes, a rule that yields

little difference between forward and backward blocking (Shanks, 1985; Vandorpe & De

Houwer, 2005; Wasserman & Berglan, 2010). In contrast, animals in conditioning para-
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digms appear to adopt a linear-sum rule, which yields stronger forward blocking with

much weaker backward blocking (Balleine et al., 2005; Denniston et al., 1996; Miller &

Matute, 1996).

Most notably, the theory accounts for abstract transfer effects, observed when different

pre-training alters subsequent learning with completely different stimuli (Beckers et al.,

2005). Using the standard approach of Bayesian model selection, the learner selects the

model that best explains the pre-training data. Then, during subsequent learning with dif-

ferent cues, the learner employs the favored model to estimate causal weights. Because

the information provided in the transfer phase is identical for all experimental conditions,

only pre-training with different cues can account for the differences observed on the

transfer test. By assuming that humans are also able to perform model averaging when

data are ambiguous between two alternative integration rules, our theory also can explain

the distinct pattern of transfer produced by post-training (Beckers et al., 2005), in which

later training with different cues alters responses to cause-effect relations learned earlier.

No previous model of sequential learning can account for abstract causal transfer, because

all previous models are restricted to learning causal weights for specific causal cues. In

the absence of any systematic featural overlap between the cues in different situations,

such models provide no basis for transfer effects.

Abstract transfer effects of this sort may reflect the fact that causal influences in the

environment typically are stable over a long timescale, so that the causal functions under-

lying observations that occur close in time are expected to be similar, even if the specific

cues vary. As a consequence, a causal system will benefit from the ability to implicitly or

explicitly learn abstract knowledge of the environment over a temporal interval, coupled

with the ability to transfer this acquired knowledge to guide causal inferences about dif-

ferent cues that occur close to, but outside of, the initial time period. Ahn and her col-

leagues (Luhmann & Ahn, 2011; Taylor & Ahn, 2012) have provided evidence

supporting this view, showing that humans develop expectations during causal learning,

and that these expectations affect the interpretations of the causal beliefs derived from

subsequently encountered covariation information.

Although the present theory postulates a powerful mechanism for learning cause-

effect relations, it certainly does not require the full power of relational reasoning (Ho-

lyoak, 2012). Abstract transfer of causal patterns to different cues can be explained by

probabilistic models, as demonstrated in recent work on causal reasoning and analogy

(Holyoak et al., 2010) and on learning sequence sets with varied statistical complexity

and transformational complexity (Gureckis & Love, 2010). However, the statistical

learning mechanisms incorporated into the present theory go well beyond any tradi-

tional associative account of sequential learning in postulating multiple integration

rules available to the learner, and in providing an explicit model of the learner’s

uncertainty.

Our theory nonetheless exploits prediction error to guide the sequential updating pro-

cess, thus preserving what seems to be the most basic contribution of the Rescorla–
Wagner model. As a result, the present model enables us to account for trial order effects

that occur in blocking experiments, which cannot be accounted for by models that only
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deal with summarized data (Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu et al., 2008a).

However, the present theory is considerably more powerful than previous accounts of

sequential causal learning. The Rescorla–Wagner model (Rescorla & Wagner, 1972) and

its many variants only update point estimates of causal strength, and thus are unable to

represent degrees of uncertainty about causal strength. Similar limitations hold for a previ-

ous model of sequential learning based on the noisy-or integration function (Danks, Grif-

fiths, & Tenenbaum, 2003). By adopting a Bayesian approach, we have provided a formal

account of how a learner’s confidence in the causal strength of a cue can change over the

course of learning, for any well-specified integration rule. The present theory goes beyond

previous accounts of dynamical causal learning (Dayan & Kakade, 2000; Daw et al.,

2008; Kruschke, 2008) with respect to its core assumption that learners (human and per-

haps non-human as well) are able to choose among multiple generative models that might

explain observed data. The theory thus captures what may be a general adaptive mecha-

nism by which biological systems learn about the causal structure of the world. The theory

might be extended, perhaps using techniques developed by Kemp and Tenenbaum (2008),

to allow for new models to be developed when existing models fail to adequately fit the

data. Such a generalized theory would allow abstract knowledge of causal models to

evolve and develop over time. To test such a theory, psychological experiments should

manipulate the causal information presented during the pre-training phase. In addition, the

present theory of sequential causal learning may potentially be integrated with models of

how non-causal relations can be acquired from examples (Lu, Chen, & Holyoak, 2012).
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Note

1. As Danks et al. (2003) observed, any model of causal learning from summary data

can be applied to sequential learning simply by keeping a running tally of the four

cells of the contingency table (defined by the presence vs. absence of a causal

cue and the effect), applying the model after accumulating n observations, and

repeating as n increases. This approach suffices to model the standard negatively

accelerating acquisition function observed in studies of sequential learning. How-
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ever, such a “pseudo-sequential” model cannot explain order effects in learning (as

all the data acquired so far are used at each update and weighted equally). More-

over, a plausible psychological model will need to operate within realistic capacity

limits. It seems unlikely that humans can store near-veridical representations of all

the specific occasions on which possible causes are paired with the presence or

absence of effects. Rather, a realistic sequential model will likely involve some

form of on-line extraction of causal relations from observations of covariations

among cues.

2. It should be noted that the empirical experiment by Beckers et al. (2005) rando-

mized the 24 trials (8G+, 8H+, 8GH+/++) in the pre-training phase. The simulation

results of our model show that the model selection decision, averaged over many

different randomized orders, maintains the same qualitative result, i.e., positive

ratio of model evidence favoring noisy-max rule for the subadditive group and

negative ratio favoring linear-sum rule for additive group.
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Appendix S1. Simulation results for forward blocking

as a function of particle numbers. The forward blocking

paradigm (6A+, 6AX+) is adopted from the study by

Vandorpe and De Houwer (2005). The results are based

on 100 simulation runs.

Appendix

Appendix A: Causal generative models with different integration rules

Cause-effect relations between an outcome O and input cues x1, x2 are modeled with

causal weights x1, x2, which indicate the strength of the effect caused by the different

cues. Formally, we define the causal generative models P(O|x1,x2,x1,x2) in terms of hid-

den states E1,E2. These states E1 and E2 are determined by the cues x1 and x2, with their

associated strengths x1,x2. The two hidden variables are combined following causal inte-

gration rules to determine whether a certain outcome would occur. Using this framework,

we derive three probabilistic models based on different causal integration rules, the lin-

ear-sum, the noisy-max, and the noisy-or.

The first two models – linear-sum and noisy-max – assume that the outcome variables,

x1,x2, are continuous-valued and hence are suitable for modeling cause-effect relations with

continuous outcomes (e.g.,amount of a food reward, the severity of an allergic reaction). For

these two models, the dependency relations of the hidden states E1, E2 to the cues x1, x2 are
specified by conditional distributions P(E1|x1,x1) and P(E2|x2,x2), given by:

PðEijxi; xiÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2h

p expf�ðEi � xixiÞ2=ð2r2hÞg; i ¼ 1; 2 ð1Þ

The output O is specified by combining the hidden states according to a distribution

P(O|E1,E2). The full generative model is obtained by integrating out the hidden variables:

PðOjx1;x2; x1; x2Þ ¼
Z

dE1

Z
dE2PðOjE1;E2ÞPðE1jx1; x1ÞPðE2jx2; x2Þ: ð2Þ
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The linear-sum and noisy-max models are obtained using different forms of the distri-

bution P(O|E1,E2) to integrate hidden states in order to obtain the output. Specifically, the

linear-sum model can be obtained as:

PðOjE1;E2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2m

p expf�ðO� E1 � E2Þ2=ð2r2mÞg: ð3Þ

In this case, we are able to integrate out E1,E2 analytically and obtain the correspond-

ing generative model with the linear-sum integration rule:

PðOjx1;x2; x1; x2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr2m þ 2r2hÞ

p exp �ðO� x1x1 � x2x2Þ2= 2ðr2m þ 2r2hÞ
� �n o

: ð4Þ

The noisy-max integration rule can be viewed as a generalization of the noisy-or rule

for continuous variables, as the max and or functions are equivalent for binary variables.

Like noisy-or, the noisy-max has the basic characteristic that the response is driven by

the dominant cue. Specifically, we obtain the noisy-max model by:

PðOjE1;E2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2m

p expf�ðO� FðE1;E2;TÞÞ2=ð2r2mÞg: ð5Þ

where the function F(E1,E2;T) is specified using noisy-max function of

E1
eE1=T

eE1=TþeE2=T
þ E2

eE2=T

eE1=TþeE2=T
. The parameter T determines the sharpness of the noisy-max

function. As T ↦ 0, the noisy-max function becomes identical to the max function, max
(E1,E2). By contrast, as T ↦ ∞ the noisy-max function becomes the average (E1 + E2)/2.

For the noisy-max model it is impossible to integrate E1,E2 analytically to get a closed

form solution for P(O|x1,x2,x1,x2).
Finally, the noisy-or rule can also be incorporated into the proposed framework. The

noisy-or model differs from the previous two models by requiring the cues x1,x2 and out-

come O as binary variables. As a result, a different distribution is required to specify

how the input cues generate the hidden states in a probabilistic manner:

PðE1 ¼ 1jx1; x1Þ ¼ x1x1;PðE2 ¼ 1jx2; x2Þ ¼ x2x2: ð6Þ

Then the OR integration rule can be applied to define the distribution P(O | E1, E2) by:

PðO ¼ 1jE1 _ E2 ¼ 1Þ ¼ 1: ð7Þ

We obtain the generative model by summing over the binary variables E1,E2 to get the

standard noisy-or integration function:
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PðO ¼ 1jx1;x2; x1; x2Þ ¼
X
E1;E2

PðO ¼ 1jE1;E2ÞPðE1 ¼ 1jx1; x1ÞPðE2 ¼ 1jx2; x2Þ

¼ x1x1 þ x2x2 þ x1x1x2x2:

ð8Þ

Appendix B: The sequential learning model

We assume that a reasoner maintains a model m, corresponding to a specific causal

integration rule, and updates the probability distribution Pðx~tjDt;mÞ of the causal weights

over time. The update depends on all the data Dt ¼ fD1; . . .;Dtg ¼ fðx~1;O1Þ; . . .;
ðx~t;OtÞg up to time t, in which the cues x~¼ ðx1; x2Þ take binary values x1,x22{0,1} to

indicate the presence or absence of cues, while the outcomes O take continuous values

O 2 {0, 1, 2}. More specifically, the distribution of causal weights Pðx~tþ1jDtþ1;mÞ is

updated following the updating equations, which predict a distribution for x~tþ1 at time t
and then make a correction using the new data at time t + 1:

Pðx~tþ1jDt;mÞ ¼
Z

dx~tPðx~tþ1jx~tÞPðx~tjDt;mÞ; ð9Þ

Pðx~tþ1jDtþ1;mÞ ¼ PðDtþ1jx~tþ1;mÞPðx~tþ1jDt;mÞ
PðDtþ1jDt;mÞ : ð10Þ

We assume that the model parameters (causal weights) vary slowly with time as

expressed by a temporal prior Pðx~tþ1jx~tÞ, which encourages the weights to take similar

values at neighboring times but allows some variations. The temporal prior is defined as

a conditional Gaussian distribution for xi, causal weights for the ith cue, as:

Pðxtþ1
i jxt

iÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pr2T

p expf�ðxtþ1
i � xt

iÞ2=ð2r2TÞg; i ¼ 1; 2: ð11Þ

This prior allows the weights to vary from trial to trial. The amount of variation is

controlled by the parameter r2T . In the limit as r2T ! 0, weights become fixed and do not

change. For larger values of r2T the weights can change significantly from one trial to the

next. Similar priors have been used in models of animal conditioning (Daw, et al., 2007).

The use of a temporal prior ensures that the model is sequential and is sensitive to the

order of the time sequences of cue-outcome pairs.

The sequential Bayesian model is optimal, in the sense that it gives the conditional distri-

bution of the weights x~t conditioned on all the data. With the dynamic component, it updates

this distribution recursively from Pðx~t�1jDt�1;mÞ (i.e., without needing to store all the previ-
ous cue-outcome pairs). Note that if the probability distributions Pðx~tþ1jx~tÞ and PðOtjx~t; x~tÞ
are Gaussian, then the sequential Bayesian model simplifies to updating the parameters of

Gaussian distributions, which can be done using algebraic equations (Ho & Lee, 1964), cor-

responding to the standard Kalman filter as used in previous models (Dayan et al., 2000).
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We can contrast the sequential Bayesian with the Rescorla-Wagner algorithm (Rescorla

& Wagner, 1972), which is a standard procedure for estimating weight parameters for

sequential data (e.g., in animal conditioning experiments). Formally, weights are updated

as new data arrive by x~tþ1 ¼ x~t þ dFðOtþ1; x~tþ1;x~tÞ, where FðOtþ1; x~tþ1;x~tÞ depends on

the difference between the new outcome Ot+1 and the prediction. The sequential Bayesian

model becomes very similar to Rescorla-Wagner for specific choices of the probability

distributions. A necessary, but not sufficient condition, is that the distributions become

strongly peaked so that uncertainty is removed and the Bayesian model merely has to

track the mean state.

Though the sequential Bayesian model has some similarity to the Rescorla-Wagner

model (e.g., modifying weights based on prediction error), it differs in several aspects.

First, the Rescorla–Wagner model corresponds to a specific causal integration rule, lin-

ear-sum, for representing cause-effect relations. Second, it updates the weights/parame-

ters without taking uncertainty into account, and therefore does not model the

probability of observing the data, as is required to perform model selection. Third, there

is no theoretical framework that allows Rescorla–Wagner to do model selection. Fourth,

there is no natural way to degrade the Rescorla-Wagner algorithm to test robustness or

allow for limited neural resources. Although the Rescorla–Wagner model has had con-

siderable success dealing with many complex phenomena, such as some forms of block-

ing, it is unable to account for the complex phenomena we deal with in the present

paper.

Appendix C: Theory of causal transfer

Our theory assumes that a reasoner has a set of different generative models for learn-

ing cause-effect relations and is able to choose between them based on observations, and

then apply the selected models to further sequential data. As specified in section 1, each

generative model m is specified by a probability distribution PðDjx~;mÞ for generating the

data D (i.e., the trial sequences of cue-outcome events) in terms of parameters x~ (e.g.,

measures of causal strength). Combined with the sequential Bayesian framework, we can

assess three quantities. (1) We can estimate the probability distribution of the weights

given the data Pðx~jD;mÞ ¼ PðDjx~;mÞPðx~jmÞ
PðDjmÞ , and estimate properties such as the mean

weights x~�
m ¼ R

dx~Pðx~jD;mÞ. (2) We can estimate PðDjmÞ ¼ R
dx~PðDjx~;mÞPðx~jmÞ,

the probability that the data D were generated by model m. This estimate enables us to

perform model selection by finding the model that best accounts for the data. Formally,

we select the model m∗ for which the probability of the observed data PðDjmÞ is largest.
(3) We can estimate the averages of the weights with respect to the models (conditioned

on the data),
P

m2M x~�
mPðmjDÞ, where PðmjDÞ / PðDjmÞ. This is model averaging,

which can be thought of as a softer version of model selection, and is suitable if the lear-

ner does not wish to commit to a single model.

We define the three types of inferences in a formal way below. We estimate the

parameter weights by taking the averages of the posterior distributions:
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bx~t ¼
Z

dx~tðx~tÞPðx~tjfOtg; fx~gÞ: ð12Þ

Model selection requires evaluating how well each model can account for the observed

sequence of data {Ot} and fx~tg. We introduce variable m to index the model and make it

explicit in the probability distributions.

PðfOsgjfx~sg;mÞ ¼
Ys�1

t¼0

P Otþ1jfOtg; fx~tþ1g;m� �
; ð13Þ

with the convention that

P Otþ1jfOtg; fx~tþ1g;m� � ¼ Z
dx~tþ1P Otþ1jx~tþ1; x~tþ1;m

� �
Pðx~tþ1jfOtg; fx~tg;mÞ: ð14Þ

Model averaging involves a combination of parameter estimation and averaging. For

each model m we compute PðmjDÞ ¼ PðDjmÞPðmÞ
PðDÞ . We compute the model evidence PðDjmÞ

as described above. We set P(m) = 1/2 for both models. Then PðDÞ ¼ P
m PðmjDÞPðmÞ .

Intuitively, model averaging is a “soft” way to combine the weight estimates of each

model, whereas model selection combines them in a “hard” manner.
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