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Abstract

People are adept at perceiving interactions from movements
of simple shapes but the underlying mechanism remains un-
known. Previous studies have often used object movements
defined by experimenters. The present study used aerial videos
recorded by drones in a real-life environment to generate de-
contextualized motion stimuli. Motion trajectories of dis-
played elements were the only visual input. We measured
human judgments of interactiveness between two moving el-
ements, and the dynamic change of such judgments over time.
A hierarchical model was developed to account for human per-
formance in this task, which represents interactivity using la-
tent variables, and learns the distribution of critical movement
features that signal potential interactivity. The model provides
a good fit to human judgments and can also be generalized to
the original Heider-Simmel animations (1944). The model can
also synthesize decontextualized animations with controlled
degree of interactiveness, providing a viable tool for studying
animacy and social perception.

Keywords: social interaction; motion; decontextualized ani-
mation; hierarchical model; action understanding

Introduction
People are adept at perceiving goal-directed action and infer-
ring social interaction from movements of simple objects. In
their pioneering work, Heider and Simmel (1944) presented
video clips showing three simple geometrical shapes mov-
ing around, and asked human observers to describe what they
saw. Almost all observers described the object movements
in an anthropomorphic way, reporting a reliable impression
of animacy and meaningful social interaction among the geo-
metric shapes displayed in the decontextualized animation.

Later studies (Dittrich & Lea, 1994; Scholl & Tremoulet,
2000; Tremoulet & Feldman, 2000, 2006; Gao, Newman, &
Scholl, 2009; Gao, McCarthy, & Scholl, 2010) used more
controlled stimuli and systematically examined what factors
can impact the perception of goal-directed actions in a decon-
textualized animation. The results provided converging evi-
dence that the perception of human-like interactions relies on
some critical low-level motion cues, such as speed and mo-
tion direction. However, it remains unclear how the human
visual system combines motion cues from different objects to
infer interpersonal interactivity in the absence of any context
cues.

To address this fundamental question, Baker, Saxe, and
Tenenbaum (2009) developed a Bayesian model to reason
about the intentions of an agent when moving in maze-like
environments of the sort used by Heider and Simmel (1944).
Other studies (Baker, Goodman, & Tenenbaum, 2008; Ull-
man et al., 2009; Baker, 2012) developed similar models that
could be generalized to situations with multiple agents and

∗These two authors contributed equally.

Figure 1: Stimulus illustration. (Left) An example frame of an aerial
video recorded by a drone. Two people were being tracked (framed
by red and green boxes). (Right) A sample frame of an experimental
trial. The two people being tracked in the aerial video are presented
as two dots, one in red and one in green, in a black background. A
video demonstration can be viewed on the project website: http://
www.stat.ucla.edu/˜tianmin.shu/HeiderSimmel/CogSci17

different contexts. These modeling studies illustrate the po-
tential fruitfulness of using a Bayesian approach as a princi-
pled framework for modeling human interaction shown in de-
contextualized animations. However, these models have been
limited to experimenter-defined movements, and by compu-
tational constraints imposed by the modelers for particular
application domains.

The present study aims to generate Heider-Simmel-type
decontextualized animations using real-life videos of visual
scenes. As a naturalistic example, imagine that you are
watching a surveillance video recorded by a drone from a
bird’s eye view, as shown in Fig. 1. In such aerial videos,
changes in human body postures can barely be seen, and the
primary visual cues are the noisy movement trajectories of
each person in the scene. This situation is analogous to the ex-
perimental stimuli used in Heider and Simmel’s studies, but
the trajectories of each entity are directly based on real-life
human movements.

In the present study, we first used real-life aerial videos to
generate decontextualized animations and to assess how hu-
man judgments of interactivity emerge over time. We devel-
oped a hierarchical model to account for human performance.
One advantage of using aerial videos to generate decontex-
tualized animations is that the technique provides sufficient
training stimuli to enable the learning of a hierarchical model
with hidden layers, which could illuminate the representa-
tions of critical movement patterns that signal potential inter-
activity between agents. Furthermore, we assessed whether
the learning component in the model can be generalized to
the original animations by Heider and Simmel (1944).

Computational Model
We designed a hierarchical model with three layers. As
shown in Fig. 2, the first layer (the X layer) estimates spa-
tiotemporal motion patterns within a short period of time.

1066



xt
2

yk

sKs1 …

xt
1

sk

t 2 Tk t 2 Tk

…

… …

y1 yK

Figure 2: Illustration of the hierarchical generative model. The solid
nodes are observations of motion trajectories of two agents, and the
remaining nodes are latent variables constituting the symbolic rep-
resentation of an interaction, i.e., the original trajectories are coded
as a sequence of sub-interactions S and interaction labels Y .

The second layer (the S layer) captures the involvement of
various motion fields at different stages of interactivity over a
long period by temporally decomposing interactivity with la-
tent sub-interactions. The last layer (the Y layer) indicates the
presence or absence of interactiveness between two agents.

The inputs to the model are motion trajectories of two
agents, denoted as Γa = {xt

a}t=0,··· ,T , a = 1,2. The position
of agent a (a = 1,2) at time t is xt

a = (x,y). The total length
of the trajectory is T . Using the input of motion trajecto-
ries, we can readily compute the velocity sequence of agent a
(a = 1,2), i.e., Va = {vt

a}t=1,··· ,T , where vt
a = xt

a−xt−1
a .

To capture the interactivity between two agents based on
the observed trajectories of movements, the model builds on
two basic components. (1) Interactivity between two agents
can be represented by a sequence of latent motion fields, each
capturing the relative motion between the two agents who
perform meaningful social interactions. (2) Latent motion
fields can vary over time, capturing the behavioral change of
the agents over a long period of time. The details for quanti-
fying the two key components are presented in the next two
subsections.

Conditional Interactive Fields

As illustrated in Fig. 3, we use conditional interactive fields
(CIFs) to model how an agent moves with respect to a refer-
ence agent. We randomly select an agent to be the reference
agent, and then model the partner agent’s movement by esti-
mating a vector field of the relative motion conditioned on a
specific distribution of the reference agent’s motion.

To ensure that the fields are orientation invariant, we per-
form a coordinate transformation as Fig. 3 illustrates. At each
time point t, the transformed position of the reference agent
is always located at (0,0), and its transformed velocity di-
rection is always pointed to the norm of the upward vertical
direction. Consequently, the position and velocity of the sec-
ond agent after the transformation, i.e., Γ̃ = {x̃t}t=0,··· ,T and
Ṽ = {ṽt}t=1,··· ,T , can be used to model the relative motion.

For a sub-interaction s (interactivity in a relatively short
time sharing consistent motion patterns, e.g., approaching,
walking together, standing together), we define its CIF as a

(0,0)

(0,0)

Coordinate
Transformation =

Ref. Agent
Condition Interactive Field

+
xt

2

vt
2

ṽt

x̃t

Figure 3: Illustration of a conditional interactive field (CIF): after
a coordinate transformation w.r.t. the reference agent, we model
the expected relative motion pattern x̃t and ṽt conditioned on the
reference agent’s motion.
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Figure 4: Temporal parsing by S (middle). The top demonstrates
the change of CIFs in sub-interactions as the interaction proceeds.
The bottom indicates the change of interactive behaviors in terms of
motion trajectories. The colored bars in the middle depict the types
of the sub-interactions.

linear dynamic system:

ṽt ∼N (Asx̃t +Bs,Σs), (1)

where As, Bs, and Σs = diag(σ2
s1,σ

2
s2) are the parameters

of the Gaussian distribution to be learned for each sub-
interaction s. Asx̃t + Bs can be interpreted as the expected
motion at location x̃ in the field.

Temporal Parsing by Latent Sub-Interactions
We assume that a long interactive sequence can be decom-
posed into several distinct sub-interactions each with a dif-
ferent CIF. For example, when observing that two people
walk towards each other, shake hands and walk together,
we can decompose this interactive sequence into three sub-
interactions. We represent meaningful interactivity as a se-
quence of latent sub-interactions S = {sk}k=1,...,K , where a
latent sub-interaction determines the category of the CIF in-
volved in a time interval Tk = {t : t1

k ≤ t ≤ t2
k }, such that

st = sk, ∀t ∈ Tk. sk is the sub-interaction label in the k-th in-
terval representing the consistent interactivity of two agents
in the interval. Fig. 4 illustrates the temporal parsing.

In each interval k, we define an interaction label yk ∈ {0,1}
to indicate the absence or presence of interactivity between
the two agents. The interaction labels also constitute a se-
quence Y = {yt}t=1,··· ,T . We have yt = yk, ∀t ∈ Tk, where yk
is the interaction label in interval Tk.

Model Formulation
Given the input of motion trajectories Γ, the model infers the
posterior distribution of the latent variables S and Y ,

p(S,Y |Γ) ∝ P(Γ | S,Y )︸ ︷︷ ︸
likelihood

· P(S | Y )︸ ︷︷ ︸
sub int. prior

· P(Y )︸︷︷︸
int. prior

. (2)
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The likelihood assesses how well the motion fields under
corresponding CIFs of sub-interactions can account for rela-
tive motion observed in the video input, the spatial density of
the relative position and the observed motion of the reference
agent:

p(Γ | S,Y ) =
K

∏
k=1

∏
t∈Tk

p(ṽt , x̃t ,vt
1 | st = sk,yt = yk), (3)

where

p(ṽt , x̃t ,vt
1 | st = sk,yt = yk)

= p(ṽt | x̃t ,sk,yk)︸ ︷︷ ︸
rel. motion

· p(x̃t | sk,yk)︸ ︷︷ ︸
rel. spatial density

· p(||vt
1|| | sk,yk)︸ ︷︷ ︸

ref. motion

. (4)

Note that vt
1 is the reference agent’s velocity. When yk = 1,

the first term is defined in equation (1), the second term is
learned by Gaussian kernel density estimation, and the third
term is defined as a Weibull distribution, which is suitable for
learning a long-tail distribution of a non-negative variable.
When yk = 0, the first term is defined as a Gaussian distri-
bution N ([0,0]>,Σ0 = diag(σ2

0,σ
2
0)), and the remaining two

terms are uniform distributions in quantized spaces.
We model the prior term of sub-interactions P(S|Y ) using

two independent components, i) the duration of each sub-
interaction, and ii) the transition probability between two con-
secutive sub-interactions, as follows:

p(S | Y ) =
K

∏
k=1

p(|Tk||sk,yk)︸ ︷︷ ︸
duration

K

∏
k=2

p(sk|sk−1,yk)︸ ︷︷ ︸
transition

. (5)

When yk = 1, the two terms follow a log-normal distribution
and a multinomial distribution respectively; when yk = 0, uni-
form distributions are used for the two terms instead.

Finally, we use a Bernoulli distribution to model the prior
term of interactions P(Y ),

p(Y ) =
K

∏
k=1

∏
t∈Tk

p(yt = yk) =
K

∏
k=1

∏
t∈Tk

ρ
yt
(1−ρ)1−yt

. (6)

Inference and Prediction
The model infers the current status of latent variables and pro-
duces an online prediction of future trajectories. Inference
and prediction are performed for each time point from 1 to
T sequentially (rather than offline prediction, which gives the
labels after watching the entire video).

We denote trajectories from 0 to t as Γ0:t , and the sub-
interactions from 1 to t − 1 as S1:t−1. Without loss of gen-
erality, we assume there are K sub-interactions in S1:t−1 with
TK being the last interval and st−1 = sK . We first infer st under
the assumption of interaction (i.e., yt = 1) by maximizing

p(st | Γ0:t ,S1:t−1,yt) ∝ p(ṽt , x̃t ,vt
1 | st)p(st | S1:t−1,yt),

(7)

where,

p(st | S1:t−1,yt)

=

{
p(τ≥ |Tk|+1 | st = st−1,yt) if st = st−1

p(τ≥ 1 | st ,yt)p(st |st−1) otherwise
. (8)

Then the posterior probability of yt = 1 given st ∈ S is de-
fined as

p(yt | st ,Γ0:t ,S1:t−1) ∝ p(st | Γ0:t ,S1:t−1,yt)p(yt), (9)

This computation makes it possible to perform the follow-
ing inferences and online prediction: i) we maximize (7) to
obtain the optimal st ; ii) we use (9) to compute the posterior
probability of two agents being interactive at t under the CIF
of st as an approximation of the judgment of interaction/non-
interaction provided by human observers; iii) the model can
synthesize new trajectories using the following computation,

st+1 ∼ p(st+1 | S1:t ,yt+1), (10)

xt+1
1 ,xt+1

2 ∼ p(xt+1
1 ,xt+1

2 |xt
1,x

t
2,s

t+1,yt+1)

= p(ṽt+1, x̃t+1,vt+1
1 | st+1,yt+1)

, (11)

where ṽt+1, x̃t+1, and vt+1
1 are given by xt

1, xt+1
1 , xt

2 and xt+1
2 ,

and the last term is defined in (4). By setting yt+1 = 1 or
yt+1 = 0 in (10) and (11).

Learning
Algorithm
To train the model, we used Gibbs sampling to find the S that
maximizes the joint probability P(Y,S,Γ). The implementa-
tion details are summarized below:

• Step 0: To initialize S, we first construct a feature vec-
tor for each time t, i.e., [||vt

1||, x̃t , ṽt ]>. A K-means clus-
tering is then conducted to obtain the initial {st}, which
also gives us the sub-interaction parsing S after merging
the same consecutive st .

• Step 1: At each time point t of every training video, we
update its sub-interaction label st by

st ∼ p(Γ | S−t ∪{st},Y )p(S−t ∪{st} | Y ), (12)

where S−t is the sub-interaction temporal parsing exclud-
ing time t, and S−t ∪{st} is a new sub-interaction sequence
after adding the sub-interaction at t. Note that Y is always
fixed in the procedure; thus we do not need p(Y ) term for
sampling purpose.

• Step 2: If S does not change anymore, go to next step;
otherwise, repeat step 1.

• Step 3: Since we do not include the non-interactive videos
in the training set, we selected 22 videos in the first human
experiment (a mixture of interactive and non-interactive
videos) as a validation set to estimate ρ and σ0 by maxi-
mizing the correlation between the model prediction of (9)
and the average human responses in the validation set.
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Model Simulation Results
We tested the model using two sets of training data. The first
dataset is a UCLA aerial event dataset collected by Shu et al.
(2015), in which about 20 people performed some group ac-
tivities in two scenes (a park or a parking lot), such as group
touring, queuing in front of a vending machine or playing fris-
bee. People’s trajectories and their activities are manually an-
notated. The dataset is available at http://www.stat.ucla
.edu/˜tianmin.shu/AerialVideo/AerialVideo.html

We selected training videos including interactivity from the
database, so that the two agents always interact with each
other in all training stimuli. Thus, for any training video,
yt = 1, ∀t = 1, · · · ,T . During the training phase, we excluded
the examples used in human experiments. In total, there were
131 training instances.

In the implementation, we manually define the maximum
number of sub-interaction categories to be 15 in our full
model (i.e., |S | = 15), which is over-complete for our train-
ing data according to learning (low frequency in the tail of
Fig. 6). With simulated annealing (Kirkpatrick, Gelatt, &
Vecchi, 1983), Gibbs sampling converges within 20 sweeps
(where a sweep is defined as all the latent sub-interaction la-
bels have been updated once). The frequencies of the top 15
CIFs are highly unbalanced. In fact, the top 10 CIFs account
for 83.8% of the sub-interactions in the training data. The
first row of Fig. 5 provides a visualization of the top 5 CIFs.

The second dataset was created from the original Heider-
Simmel animation (i.e., two triangles and one circle). We
extracted the trajectories of the three shapes, and thus ob-
tained 3 pairs of two-agent interactions. We truncated the
movie into short clips (about 10 seconds) to generate a to-
tal of 27 videos. The same algorithm was used to train the
model with 15 types of CIFs. The most frequent five CIFs
are visualized in the second row of Fig. 5. Clearly, the richer
behavior in the Heider-Simmel animation yielded a variety
of CIFs with distinct patterns compared to the CIFs learned
from aerial videos. The frequencies of CIFs are also more
distributed in this dataset, as shown in Fig. 6.

We observed a few critical CIFs that signal common in-
teractions from the two simulation results. For instance, in
aerial videos, we observed i) approaching, e.g., CIF 1 and ii)
walking in parallel, or following, e.g., the lower part of CIF
2; the Heider-Simmel animation revealed additional patterns
such as i) orbiting, e.g., CIF 1, ii) walking-by, e.g., CIF 5, and
iii) leaving, e.g., CIF 4.

Experiment
Stimuli
24 interactive stimuli were generated from different pairs of
human interactions in aerial videos. We selected two people
interacting with each other in each aerial video. We then gen-
erated the decontextualized animations by depicting the two
people as dots with different colors. The dots’ coordinates
were first extracted from the aerial videos by human annota-
tors. Note that the two dots were first re-centered to localize

the midpoint at the center of the screen in the first frame. The
coordinates were temporally smoothed by averaging across
the adjacent 5 frames.

24 non-interactive stimuli were generated by interchanging
motion trajectories of two people selected from two irrelevant
interactive videos (e.g., the motion of one dot in video 1 re-
combined with the motion of a dot in video 2). The starting
distances between two dots in non-interactive stimuli were
kept the same as in the corresponding interactive stimuli.

The duration of stimuli varied from 239 frames to 500
frames (mean frame = 404), corresponding to 15.9 to 33.3
seconds, with a recording refresh rate of 15 frames per sec-
ond. The diameters of dots were 1◦ of visual angle. One
dot was displayed in red (1.8 cd/m2) and the other in green
(30 cd/m2) on a black background (0 cd/m2). Among the 48
pairs of stimuli, four pairs of actions (two interactive and two
non-interactive) were used as practice.

Participants
33 participants (mean age = 20.4; 18 female) were enrolled
from the subject pool at the University of California, Los An-
geles (UCLA) Department of Psychology. They were com-
pensated with course credit. All participants had normal or
corrected-to-normal vision.

Procedures
Participants were seated 35 cm in front of a screen, which
had a resolution of 1024×768 and a 60 Hz refresh rate. First,
participants were given a cover story: “Imagine that you are
working for a company to infer whether two people carry out
a social interaction based on their body locations measured by
GPS signals. Based on the GPS signal, we generated two dots
to indicate the location of the two people being tracked.” The
task was to determine when the two dots were interacting with
each other and when they were not. Participants were asked
to make continuous responses across the entire duration of
the stimuli. They were to press and hold the left-arrow or
right-arrow button for interactive or non-interactive moments
respectively, and to press and hold the down-arrow button if
they were unsure. If no button was pressed for more than one
second, participants received a 500 Hz beep as a warning.

Participants were presented with four trials of practice at
the beginning of the session to familiarize them with the task.
Next, 44 trials of test stimuli were presented. The order of
trials was randomized for each participant. No feedback was
presented on any of the trials. The experiment lasted for about
30 minutes in total.

Results
Interactive, unsure and non-interactive responses were coded
as 1, 0.5, and 0, respectively. Frames with no responses were
removed from the comparison. Human responses were shown
in Fig. 8 (left). A paired-sample t-test revealed that the aver-
age ratings of non-interactive actions (M = 0.34, SD = 0.13)
were significantly lower than interactive actions (M = 0.75,
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Figure 5: Interactive fields of the top five frequent CIFs learned from aerial videos (top) and Heider-Simmel movie (bottom) respectively.
In each field, the reference agent (red dot) is at the center of a field i.e., (0,0), moving towards north; the arrows represent the mean relative
motion at different locations and the intensities of the arrows indicate the relative spatial density which increases from light to dark.
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Figure 6: The frequencies of learned CIFs with the training data
generated from aerial videos (top) and the Heider-Simmel movie
(bottom). The numbers on the x axis indicate the IDs of CIFs, ranked
according to the occurrence frequency in the training data.

Method HMM One-Interaction Hierarchical Model
|S |= 5 |S |= 10 |S |= 15

r 0.739 0.855 0.882 0.911 0.921
RMSE 0.277 0.165 0.158 0.139 0.134

Table 1: The quantitative results of all methods in experiment 1 us-
ing aerial videos as training data.

SD = 0.13), t(32) = 13.29, p < 0.001. This finding indi-
cates that human observers are able to discriminate interac-
tivity based on decontextualized animations generated from
the real-life aerial videos.

To compare the model predictions with human continuous
judgments, we computed the average human ratings, and ran
the model to simulate online predictions of sub-interaction
and interaction labels on the testing videos (excluding the
ones in the validation set). Specifically, we used (9) to com-
pute the probability of two agents being interactive with each
other at any time point t. The model simulation used the
hyper-parameters ρ = 10−11 and σ0 = 1.26.

Table 1 summarizes the Pearson correlation coefficient r
and root-mean-square error (RMSE) between the model pre-
dictions and the human ratings using aerial videos as train-
ing data. We compare our hierarchical model with two base-
line models: i) Hidden Markov Model (HMM), where the
latent variables st and yt only depend on their preceding vari-
ables st−1 and yt−1; ii) a model with only one type of sub-
interaction. Both models yielded poorer fits to human judg-
ments (i.e., lower correlation and higher RMSE) than the hi-
erarchical model. In addition, we changed the number of sub-
interaction categories to examine how sensitive our model is

to this parameter. The results clearly show that i) only using
one type of sub-interaction provides reasonably good results,
r = .855, and ii) by increasing the number of sub-interactions
|S |, the fits to human ratings were further improved until
reaching a plateau with a sufficiently large number of sub-
interactions.

Fig. 7 shows results for a few videos, with both model pre-
dictions and human ratings. The model predictions accounted
for human ratings quite well in most cases. However, the
model predictions were slightly higher than the average hu-
man ratings, which may be due to the lack of negative exam-
ples in the training phase. We also observed high standard
deviations in human responses, indicating the large variabil-
ity of the online prediction task for every single frame in a
dynamic animation. In general, the difference between our
model’s predictions and human responses are seldom larger
than one standard deviation of human responses.

We also tested the model trained from the Heider-Simmel
movie on the same testing set (generated from the aerial
videos), yielding a correlation of 0.640 and RMSE of 0.227.
The reduced fitting result indicates the discrepancy between
two types of videos. The CIFs learned from one dataset may
be limited in generalization to the other dataset.

One advantage of developing a generative model is that it
enables the synthesis of new videos by (10) and (11), based
on randomly sampled initial positions of the two agents (x0

1,
x0

2) and the first sub-interaction s1. By setting the interaction
labels to be 1 or 0, the synthesized stimuli can be controlled
to vary the degree of interactiveness. We ran a second experi-
ment using model synthesized animations (10 interactive and
10 non-interactive clips). These synthesized videos were pre-
sented to human observers in random orders and the interac-
tive ratings were recorded. The interactiveness between the
two agents in the synthesized videos was judged accurately
by human observers (mean rating of 0.85 for synthesized in-
teractive clips, and 0.15 for non-interactive clips), suggesting
that the model effectively captured the visual features that sig-
nal potential interactivity between agents.
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Figure 7: Comparison of online predictions by our full model (|S |= 15) (orange) and humans (blue) over time (in seconds) on testing videos.
The shaded areas show the standard deviations of human responses at each moment.
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Figure 8: Mean ratings of the interactive versus non-interactive ac-
tions in the experiment. Error bars indicate +/- 1 SEM.

Conclusion
In this paper, we examined human perception of social in-
teractions using decontextualized animations based on move-
ment trajectories recorded in aerial videos of a real-life en-
vironment, as well as Heider-Simmel-type animations. The
proposed hierarchical model built on two key components:
conditional interactive fields of sub-interactions, and tem-
poral parsing of interactivity. The model fit human judg-
ments of interactiveness well, and suggests potential mech-
anisms underlying our understanding of meaningful human
interactions. Human interactions can be decomposed into
sub-interactions such as approaching, walking in parallel, or
standing still in close proximity. Based on the transition prob-
abilities and the duration of sub-components, humans are able
to make inferences about how likely the two people are inter-
acting.

The model could be extended to be applied to the field of
behavioral recognition. While previous work has focused
on actions of individuals based on detecting local spatial-
temporal features embedded in videos (Dollár, Rabaud, Cot-
trell, & Belongie, 2005), the current work can deal with multi-
agent interaction. Understanding of the relation between
agents could facilitate the recognition of individual behav-
iors by putting single actions into meaningful social contexts.
In addition, the current model is only based on visual motion
cues. The model could be enhanced by incorporating a cogni-
tive mechanism (e.g., a theory-of-mind framework) to enable
explicit inference of intentions.
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