
Trends
People demonstrate common miscon-
ceptions when asked to make explicit
reasoning judgments about physical
systems on pencil-and-paper tasks.
However, their performance improves
when the problem is accompanied
with dynamic and contextual
information.

Recent research has shown that our
implicit judgments about physical
situations based on rich dynamic dis-
plays are consistent with probabilistic
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edge from static and dynamic visual
inputs.
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Reinvigorating Intuitive Physics
Humans are able to understand their physical environment and interact with objects and
substances that undergo dynamic state changes, making at least approximate predictions
about how observed events will unfold (e.g., predicting the trajectory of a thrown ball, the
direction that a chopped tree will fall, or the path of a breaking wave). The knowledge underlying
such activities is termed intuitive physics (see Glossary). This topic, an active research area
for several decades, has recently been reinvigorated by new theoretical approaches linked to
artificial intelligence. These theories have been used to model findings from behavioral studies
that apply psychophysical measures to perception and reasoning with complex dynamic
displays. Here, we review recent research and theories (placing them in the context of earlier
work), and discuss some of the ongoing controversies in the field.

Apparent Misconceptions in Intuitive Physics
Before the most recent decade, research on intuitive physics primarily focused on miscon-
ceptions that people demonstrate when reasoning about the attributes and movements of
objects and substances in the world (e.g., [1,2]). Numerous studies found that humans exhibit
striking deviations from Newtonian physical principles when asked to explicitly reason about the
expected continuation of a dynamic event based on a static image representing the situation at
a single timepoint. The predictions that people made in these studies often appeared to agree
with erroneous theories of motion, rather than with (ground-truth) Newtonian physics (Box 1).
For instance, adults often predict that an object dropped from a moving body will follow a linear
path downwards (i.e., the straight-down belief [2]), and children predict that a horizontal force
will propel a vertically moving object in the direction that it is pushed [3]. Such evidence has
been used to argue that people sometimes reason about the physical world using an Aristo-
telian model of physics. In other situations, adults appear to exhibit medieval impetus beliefs, for
example, that an object exiting a curved tube will follow a curvilinear trajectory in the absence of
external forces [1]. In these studies (Figure 1 and Box 2), participants were typically
shown physical situations at a specific point in time via static diagrams printed on paper,
and were required to draw how the situation would unfold going forwards in time. In such
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Glossary
Convolutional neural network: a
neural network model in which lower
levels are defined by parameters
consisting of a set of learnable filters
that are convolved across the width
and height of the input image to
extract higher-order pattern
activations.
Deep learning: a hierarchical
machine-learning method composed
of multiple processing layers that
extract abstract representations from
low-level features such as pixel
intensity and color in 2D images.
Dynamics: a branch of Newtonian
mechanics that studies how forces
(linear and rotational) affect the
movement of objects.
Intuitive physics: the knowledge
underlying the human ability to
understand the physical environment
and interact with objects and
substances that undergo dynamic
state changes, making at least
approximate predictions about how

Box 1. Erroneous Theories of Motion

The motions of objects and substances in the world are accurately described by the principles of Newtonian physics.
Newton’s three laws state that (i) an object at rest will stay at rest, and an object in motion will stay in motion, unless
acted upon by an external force, (ii) objects accelerate when an external force is applied to them, and (iii) for every action,
there is an equal and opposite reaction. Therefore, when objects fall, a gravitational force accelerates them downwards,
and when a force is applied to an object in a given direction, the object retains the motion it had before the force was
exerted.

By contrast, medieval impetus theory states that (i) the act of setting an object in motion imparts upon it an ‘impetus’
force that is used to maintain its motion, and (ii) the impetus force of a moving object gradually dissipates over time [15].
Thus, an object thrown in the air falls down because its vertical impetus dissipates, and an object will continue along a
curved trajectory after it is released from a pendulum because of a (dissipating) curvilinear impetus force.

The principles of Aristotelian physics state that an object will move in the direction that it is pushed [3]. In other words, if a
horizontally moving object is given a vertical push (e.g., a gravitational force downwards), it will immediately move
straight downwards and lose its horizontal component of velocity.
pencil-and-paper tasks, people often succumb to systematic errors when predicting the
physical behavior of situations. People are not, however, internally consistent in their explicit
reasoning judgments. Instead, they appear to reason in accord with different theories of motion
depending on the situation [4]. These findings led to a generally pessimistic assessment of the
human capacity to perceive and reason about physical situations, most notably in projectile
motion and object collision situations [5,6].
observed events will unfold.
Mass: an attribute of a physical
body that serves as a measure of its
resistance to acceleration and
determines its gravitational weight.
Newtonian physics: a framework
based on Newton’s three laws which
describe the relationships among
objects in the physical world, the
forces acting upon them, and the
motion resulting from those forces.
Object state: specifies the location,
movement, and attributes of an
object at a given time.
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Figure 1. Examples of Intuitive Physics Problems. The task in each problem is to reason about the attributes or
movements of objects and substances in various situations. Aside from object collision judgments (A), problems have
generally been depicted via a static diagram of the physical system. In (B–D) the unbroken line corresponds to the correct
trajectory, and the broken lines correspond to common, erroneous predictions. The probabilistic simulation framework has
achieved success predicting people’s expectations about the attributes (A) and movements (C) of objects in dynamic
displays, as well as the pouring angle of two fluid-filled containers (F). A computational account of people’s explicit
trajectory predictions in (B–D) has not been developed.
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Box 2. Early Research on Intuitive Physics

Early research in the field provides several examples of situations in which humans demonstrate common misconcep-
tions about how objects in the environment behave. The most extensive line of research involves human judgments
about object collisions, specifically about which object appears heavier based on an animated depiction of the collision
event. Interestingly, people have a tendency to believe that the object that moves with a greater initial velocity is heavier
[5]. This bias has recently been reinterpreted within the probabilistic simulation framework [13].

Another major line of research examined human knowledge about projectile motion. In these tasks, participants viewed
a static depiction of an object moving in a given situation and were asked to draw the trajectory the object would follow
as time progressed. In the falling object problem, people commonly responded that an object dropped from a moving
body will follow a straight path downwards [2]. People’s predictions about the trajectory of an object after being released
from a pendulum were also inconsistent with Newtonian principles [57], but a probabilistic simulation model has
achieved success predicting where the object is expected to land. People also commonly predict that an object exiting a
curved tube will follow a nonlinear trajectory upon exiting [58]. Although people’s trajectory predictions in these
problems are inconsistent with normative physical principles, they correctly judge anomalous trajectories as
appearing unnatural when presented in an animated format [9]. Currently, no computational account explains people’s
erroneous misconceptions in explicit trajectory prediction problems.

Work on mechanical reasoning supports the role of mental simulation in intuitive physics. In the pulley problem, people
take longer to respond for pulleys farther from the beginning of the causal sequence (i.e., the rope being pulled [27]). This
finding suggests that humans build analog representations of physical situations that carry spatial information, as
opposed to reasoning according to a simple rule (e.g., alternating pulleys rotate in opposite directions). The perva-
siveness of mental simulation is further reinforced by results from the water-pouring task [28]. In this task, participants
were successful when forming predictions using mental simulation but performed much worse when solving the
problem using explicit reasoning. A probabilistic simulation model has recently accounted for people’s mental
simulation performance in a modified water-pouring task [38]. Taken together, these problems provide several
examples in which people’s explicit reasoning about the physical world is biased, and suggest experimental factors
that lead to accurate predictions and judgments.
However, several studies have shown that these misconceptions can be reduced or even
abolished when experimental paradigms and tasks are varied in particular ways [7–11]. Human
errors are greatly reduced when explicit reasoning problems are presented in a familiar context
(e.g., when an object exiting a curved tube is replaced by water exiting a curved hose [7]). This
finding suggests that specific prior knowledge can override more general physical intuitions that
generate misconceptions. In addition, recent work has demonstrated that, although adults
perform poorly when drawing the trajectory an object will follow after being released from a
pendulum, they can successfully predict its landing location [8]. It thus appears that systematic
misconceptions are less likely to be exhibited in tasks that evoke implicit or tacit knowledge,
such as recognizing the normative unfolding of an event in an animated display. In addition, the
format of the stimulus display also influences how susceptible people are to misconceptions
about object movements. For example, human judgments are more consistent with Newtonian
physics when situations are presented in an animated format [9,10]. Developmental studies
have also yielded converging evidence that the judgments of children are more Newtonian
when events are presented as animations [11].

In addition to studies involving motion of a single object, early research about collisions between
two objects also demonstrated deviations of human judgments from what is expected given
Newtonian principles (Box 3). These studies were inspired by classic work on perceptual
causality which found that people report causal impressions that are not fully determined by the
physical properties of the situation [12,13]. For example, consider the case in which an initially
moving object (motor object) collides with one that is initially stationary (projectile object). When
the physical effect of the motor object on the projectile object is relatively small (e.g., the post-
collision velocity of the projectile object is less than the pre-collision velocity of the motor object),
people report a stronger causal impression than when the physical effect is large (e.g., the post-
collision velocity of the projectile object is greater than the pre-collision velocity of the motor
object) [13]. In addition, when two equally heavy objects collide, people often report that the
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Box 3. Object Collision Physics

In the case of collision events, two objects move towards one another, collide, and then move away from one another.
The movement of each object both before and after the collision is represented by its velocity, which specifies the speed
and direction of each object. While velocity can be perceived, the mass of each object (i.e., how heavy each object is)
and the amount of restitution (i.e., how much energy is ‘given back’ in the collision) cannot.

The momentum of an object is defined by the product of its mass and velocity. The principle of conservation of
momentum states that, in a closed system, the sum of the momentum of objects before a collision is equal to the sum of
their momentum after (i.e., momentum is conserved). By rearranging the conservation of momentum expression for
two-body collisions, the relative mass of two objects can be expressed purely in terms of the initial and final velocities of
the objects [59]. Thus, if humans can perceive the velocity of objects without error and reason in accord with momentum
conservation, their relative mass judgments should be invariant to the amount of restitution in the collision. This is termed
the direct perception model. Under this view, people should be equally accurate when reasoning about the relative
masses of two billiard balls (high restitution) as they are when reasoning about those of two rubber balls (low restitution).
However, humans are increasingly inaccurate when reasoning about relative mass in low-restitution collisions, thus
deviating from what would be expected given Newtonian physical principles.
motor object weighs more than the projectile object, a phenomenon termed the motor object
bias [5]. This finding was traditionally interpreted in terms of heuristics: people may infer the
attributes of colliding objects using two rules based on salient perceptual cues. (i) The object
that moves fastest following a collision event is lighter (the velocity heuristic; Figure 2A, Key
Figure); and (ii) the object that deflects at the greatest angle is lighter (the angle heuristic) [6].

However, although these heuristics account for human judgments about the relative mass of
colliding objects in some cases, they do not generalize to other situations. For example, it is
unclear whether the heuristic model accounts for relative mass judgments when the motion of
each object before the collision is occluded [13]. The heuristic account also fails to explain
why people are less susceptible to the motor object bias after completing a large number of
training trials. Even if naïve observers use heuristic reasoning to make perceptual judgments,
with experience they may transition to correct application of normative physical principles
[14].

The general picture that emerges from research on intuitive physics is that people exhibit
misconceptions and biases when (i) they are asked to provide explicit predictions or explan-
ations about continuations of physical events, (ii) the events are unfamiliar and presented with
minimal context, and (iii) the events are portrayed using impoverished stimuli, such as static line
drawings depicting a situation at a single moment in time. Although misconceptions have often
been attributed to people holding erroneous Aristotelian or impetus theories, it may well be the
case that under these unfavorable conditions people do not employ a systematic theory to infer
physical motion [4]. Instead, explicit predictions may draw upon a set of individualized back-
ground knowledge [8] based on salient perceptual cues that seem to be potentially relevant.
Importantly, when these unfavorable conditions are alleviated (i.e., when people make more
tacit judgments about familiar types of events based on rich visual displays), human judgments
align more closely with Newtonian physics [7].

It thus seems possible that people in fact have a strong intuitive ‘physics engine’ available to
them, but it is only evoked under favorable conditions. This does not imply, however, that
people do not hold explicit conceptions of physical processes, nor that those conceptions
cannot interfere with human reasoning in familiar environments. Indeed, people sometimes
push objects along curved paths to impart upon them a curvilinear impetus [15], and even
erroneously describe their own actions as adhering to the straight-down belief [2]. However,
cortical activation associated with explicit physical knowledge [16] does not entirely overlap
with brain activities associated with tacit physical inference [17]. Although people might plan
their movements or describe their actions in accord with explicit physical conceptions, it
752 Trends in Cognitive Sciences, October 2017, Vol. 21, No. 10



Key Figure

Three Approaches to Relative Mass Judgment
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Figure 2. Description of three computational approaches to determining the relative masses of two colliding objects. The
main differences between the models involve the role of learning (minimal for the heuristic approach, limited for probabilistic
simulation, and central for deep learning). (A) In the heuristic model, it is assumed that observed velocities are equivalent to
physical velocities in the world (i.e., velocity is directly perceived). Post-collision velocities are compared, and the object
that moves at the greatest speed following collision is assumed to be lighter. This heuristic is not attributed to learning. (B)
The probabilistic simulation model places priors on hidden physical variables. The motion prior biases perceived velocities
towards slow motion. The likelihoods of different mass ratios are determined by comparing simulated final velocities to
observed velocities. Learning may impact on the prior knowledge involved in the inference. (C) In a deep-learning model, a
convolutional neural network (CNN) is trained on 2D image inputs and outputs object attributes (mass and friction). The
CNN is then used to predict object attributes from previously unseen image data. This approach uses bottom-up learning.
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appears that their tacit judgments and predictions are generally consistent with normative
physical principles [8,10].

It remains uncertain how explicit physical conceptions are derived from experience and to what
degree they interact with tacit physical knowledge [18]. One reason for this uncertainty is the
difficulty in classifying conceptions as arising from perceptual ambiguity or from ineffective
representations of the perceptual and physical variables involved in a task. For example, the
straight-down belief may appear to arise when drawing the trajectory of an object after being
released from a pendulum because the speed of the object at the indicated (static) location is
ambiguous. Alternatively, people might believe that an object dropped from a moving body will
fall straight downwards because they represent the perceived motion of the object relative to
the moving body. The finding that humans are less susceptible to the straight-down belief when
the moving body is removed from the situation [19] is consistent with the latter possibility.
People are also commonly biased when drawing the water level on a rotated container (i.e., the
water-level problem [20]), even after explicitly stating that the surface of a liquid should remain
horizontal regardless of the orientation of its container [21]. In this case, the bias appears to
arise due to ineffective representation: specifically using an object-centered reference frame
with axes parallel to the surfaces of the container [22]. Although such biases might be
interpreted as predictions based on erroneous physical theories, they might instead reflect
correct application of normative principles to variables represented in moving or rotated frames
of reference. It is also possible that meaningful physical quantities (e.g., the mass distribution of
a rotating wheel) are simply not represented or are coarsely approximated in some situations,
leading to erroneous predictions and judgments [23]. People’s judgments about physical
quantities (e.g., the forces that two colliding objects impart upon one another) have also been
shown to disagree with fundamental Newtonian principles [24]. Thus, it is important that future
work in intuitive physics should consider (i) correspondence between cognitive and physical
constructs, (ii) the nature of cognitive representations across dissimilar problem contexts, (iii)
the role of physical approximation in complex displays, and (iv) the interaction between explicit
conceptions and tacit understanding in prediction and judgment tasks.

Noisy Newton Framework
In recent years, research on intuitive physics has been reinvigorated by new theoretical
approaches based on Bayesian inference, most notably the noisy Newton framework, which
integrates ground-truth physical principles with uncertainty about sensory information [13].
Models based on the noisy Newton framework assume that people integrate noisy sensory
inputs with prior beliefs about perceptual and physical variables underlying physical situations,
and model the constraints among those variables in accord with Newtonian physics. In the case
of collision events, predictions are modeled by simulating thousands of physical situations. In
each simulation, the physical outcome is computed using Newtonian laws operating on
sampled variables of perceptual and physical properties. Although most perceptual variables
appear to be observable (e.g., velocity, location), it remains necessary to convert objective
evidence (observations) into subjective estimates by integrating noisy sensory input with priors
on statistical regularities of perceptual cues in the world. Another source of sampling uncer-
tainty comes from unobservable physical properties (e.g., mass, viscosity) which must be
inferred from sensory observations and/or general knowledge about the physical world
(Figure 2B). The noisy Newton framework effectively reconciles several inconsistencies
between human judgments and Newtonian physics [13].

Probabilistic Simulation Approaches to Intuitive Physics
Motivated by the initial successes of the framework, several researchers have recently
extended the noisy Newton approach to explain human judgments and predictions about a
variety of physical situations. As an overarching framework, the Bayesian approach to intuitive
754 Trends in Cognitive Sciences, October 2017, Vol. 21, No. 10



physics can be viewed as a tool for understanding how abstract knowledge – represented by
priors and a generative function to assess likelihood – guides inference about object states
from incomplete and noisy information about perceptual and physical variables [25]. In the noisy
Newton framework, inference is achieved by passing noisy information through a physics
engine, which is defined by the principle of conservation of momentum in the case of object
collisions [13]. Knowledge about object dynamics is ‘written into’ the model under the
assumption that the transformation of perceptual inputs into physical expectations is in accord
with Newtonian physical constraints.

The key idea underlying probabilistic simulation models is that humans construct mental
models about physical situations, allowing for inference of future object states through mental
simulation [26]. The role of mental simulation is supported by work on mechanical reasoning
which has demonstrated that people reason about physical systems by constructing and
transforming spatial representations to answer questions about the behavior of objects and
substances [27,28]. Spatial representation implies that object locations, motions, and hidden
attributes in the physical world – as well as their interactions – are encoded and represented in
the mind [29]. Recent neural evidence suggests that the mental simulation process is likely
carried out in cortical regions that overlap with the domain-general ‘multiple demand’ system of
the brain [17].

Probabilistic simulation models make judgments in physical reasoning tasks by integrating
noisy information processing with advanced physics-based graphics engines to simulate future
object states. In each simulation, the values of perceptual and physical variables in a scene are
sampled according to distributions that emulate noisy information processing of the positions,
velocities, and attributes of the objects. Based on sampled states of perceptual and physical
inputs, an ‘intuitive physics engine’ which approximates Newtonian principles is used to
simulate future object states. The outcome of each simulation is then queried to form a
predicted judgment, such as whether or not a tower of blocks fell down [26] or how much
liquid fell into a designated area [30]. Judgments are then aggregated across simulations to
form a predicted response distribution. Parameters in the simulation model are chosen such
that the distribution accurately reflects human behavior.

The probabilistic simulation approach has demonstrated promising results across several
physical domains. Most studies utilizing probabilistic simulation examine the correlation
between human performance and model predictions across a range of experimental con-
ditions, rather than absolute performance levels (the typical focus in earlier studies). Overall,
model predictions correlate well with human responses about the motions and attributes of
stacked blocks [26,31] and about how liquids move past obstacles [30]. Moreover, it has been
shown that causal judgments about object collision outcomes are correlated with counterfac-
tual assessments, specifically whether and how an outcome occurs [32]. The approach has
also been used to explain human inferences about whether different containers can hold
particular objects [33], as well as infant reasoning about complex displays of moving objects
[34]. It is important to note that these simulation models account for human predictions
primarily through the implementation of noisy information processing – the physical principles
underlying object and substance dynamics are approximated but are not systematically
biased.

However, uncertainty in the inferential mechanism (i.e., the physical model itself) may also
constitute an important component in the intuitive physics ‘module’ of the brain. It has been
shown that implementing randomness into the dynamics of objects in physical situations (on
top of perceptual noise) provides a better fit to human performance in predicting the trajectory
of an occluded object bouncing within a box [35]. It appears that mental simulation outcomes
Trends in Cognitive Sciences, October 2017, Vol. 21, No. 10 755



are not deterministic for humans; instead, intermediate object states are randomly perturbed
during the inference process. Recent work suggests that, as the outcome of an event becomes
increasingly uncertain or a problem becomes more difficult, additional cognitive resources are
allocated to the mental simulation process [36].

Intuitive Physics with Liquids and Other Substances
Research on intuitive physics has transitioned beyond the behavior of solid objects to examine
the human capacity to reason about the dynamics of liquids. This ability appears to emerge in
the earliest stages of life because 5-month-old infants are able to distinguish between solids
and non-solid substances [37]. A recent study showed that a computational model based on
probabilistic simulation can account for human performance in predicting the resting configu-
ration of a liquid pouring past obstacles into two empty basins [30]. This model included
perceptual noise applied to the initial locations of liquid elements, and simulated their move-
ments using approximated normative physical principles. Probabilistic simulation was also
employed to model performance in an explicit reasoning task concerning the angle at which a
liquid-filled container will begin to spill through mental simulation [38]. This paradigm is a variant
of an earlier experiment in which participants reasoned about the angle at which two water-filled
containers – one wider than the other – would begin to spill [28] (Figure 1F and Box 2). When
asked explicitly to reason about which container would pour at a lesser angle, most participants
mistakenly chose to rotate the wider container further. However, when asked to reason about
the pouring angle of each container independently through imagined action, participants
correctly rotated the narrower container further. In the modified task [38], two containers were
filled with fluids varying in their viscosity (i.e., the apparent thickness or stickiness of a fluid), and
visual motion cues based on flow visualization animations [39] were used to infer the viscosity of
each fluid. Viscosity inferences were consistently biased towards lower values of viscosity,
suggesting that people have a prior belief that fluids tend to behave like water. Results from the
viscous fluid-pouring task indicated that human judgments about the pouring angle of the two
containers are consistent with a probabilistic simulation model utilizing normative physical
principles given noisy perceptual inputs.

Inference of Physical Variables
The probabilistic simulation approach builds on two basic components: physical variables
provided as the input to a physics engine, and physical principles encoded in the engine. Some
physical variables (e.g., velocity and object positions) can be directly perceived, although
perceived values could be distorted by neural noise and by generic priors (e.g., the slow
and smooth prior in motion perception [40,41]). However, other physical variables (e.g., mass,
viscosity, density, and gravity) are not directly perceivable. How could humans infer these
physical attributes from low-level visual features of images?

Recent advances in deep learning models suggest a potential computational mechanism for
inferring physical attributes from visual inputs and making predictions about physical situations.
This approach arose in the field of machine learning, and is based on implementations of
convolutional neural networks (CNNs) [42–44]. These networks take images encoded at
the pixel level as inputs, and process the information through hierarchical layers to learn
representations at multiple levels of abstraction, ranging from simple visual components (e.
g., edges) to more complex patterns and object categories. A hybrid approach – integrating a
knowledge-based physics model with a learning-based recognition network for predicting
physical attributes from visual inputs – has had some success in accounting for human intuitive
physical predictions [45]. Utilizing a deep-learning network, dynamic visual inputs (sequences
of 2D images) are mapped to inferred attributes (mass and friction) of two colliding objects
through multiple processing layers (Figure 2C). This procedure effectively inverts a key com-
ponent of the generative physical process. The network is trained on image data tied to object
756 Trends in Cognitive Sciences, October 2017, Vol. 21, No. 10



attributes, which are determined by matching key features of the visual inputs to simulation
output from a physics engine. This model performs with an accuracy comparable to that of
humans, demonstrating that learning-based methods can be effectively integrated with a
knowledge-based physics engine to infer the attributes and dynamics of objects in the
environment.

Learning about the Physical World
Approaches to physical reasoning based on probabilistic simulation typically assume that
ground-truth physical principles are provided as prior knowledge. Thus, it is important to
examine how such knowledge can be acquired. Is the mind of a child akin to a blank notebook
with minimal information, as Alan Turing surmised [46], or is a cognitive architecture in place that
guides the developing mind in learning about the physical properties of objects and the nature
of their interactions?

Converging research on infants, children, and non-human primates has provided support for
the core knowledge thesis [47], according to which humans utilize separable systems of innate
core knowledge, and these serve as building blocks for later learning. The thesis states that
core physical principles guide the construction of tacit theories of motion [48]. Perceptual
information serves as evidence for preexisting theories, and is represented with increasing
complexity as theoretical understanding develops [49]. For example, infants first appear to
grasp qualitatively whether a box and table are in contact with one another, and later become
sensitive to the quantitative proportion of contact between the two surfaces. This variable
identification process is repeated for different phenomena at various developmental stages,
leading to piecemeal knowledge about physical situations which does not necessarily transfer
to new situations that seem to be unrelated at the surface level [48]. In other words, initial
knowledge about the physical world is specific to learned domains [50].

From a computational perspective, one basic approach to learning is based on exemplars.
Observed instances of a physical situation are represented as vectors in an N-dimensional
space linked to corresponding attributes (e.g., whether the motor or projectile object in a
collision is heavier [51]). Expected attributes of newly observed instances are predicted by
summing similarity measures across instances belonging to each possible classification.
However, although the exemplar approach makes sensible predictions within constrained
physical regimes by imitating physical knowledge, it fails to generalize to previously unseen
regions in the stimulus space.

A more recent learning-based approach has been to directly emulate physical principles using
deep-learning methods. The NeuroAnimator model [52] is a neural network that emulates the
mapping function which propagates a physical state forwards in time by viewing several
instances of physical state transformations. Whereas the probabilistic simulation approach
utilizes closed-form physical expressions to propagate scene states forwards in time, the
NeuroAnimator model can achieve comparable performance by learning state transition
patterns and applying them to previously unseen situations. When a general-purpose engine
that emulates the laws of physics was trained on several physical domains, it then generalized
to novel systems with different object quantities and relational rules [53]. This is a promising step
towards developing a learnable physics engine that can generalize to novel situations in a
manner consistent with human abilities. Similarly, the PhysNet model, with an architecture
based on a CNN, has achieved success in making physical predictions about simplistic block
tower scenarios [54]. After training on artificial scenarios, PhysNet is capable of reasoning about
the outcome and future trajectories of both artificial and real-world block tower configurations. It
can generalize to new block-tower configurations with a different number of blocks than in the
training cases, and yields predictions that are reliably correlated with human responses.
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Outstanding Questions
How proficient are people at reasoning
about the dynamics of relatively unfa-
miliar non-rigid substances (e.g., sand,
honey), and what prior knowledge do
people adopt about the attributes of
unfamiliar substances?

What perceptual characteristics of
intuitive physics problems are neces-
sary to enable spatial representation of
physical variables and subsequent
mental simulation?

What is the role of dynamic uncertainty
(i.e., uncertainty in people’s internal
model of physical dynamics) in mental
simulation? What factors cause
changes in the amount of uncertainty,
and how can stochastic noise at dif-
ferent levels of processing be imple-
mented into numerical physics
models?

How do humans acquire the ability to
perform mental simulation, and selec-
tively control the use of mental simula-
tion in different situations? What
computational constraints and proc-
essing constraints are adopted when
reasoning about physical situations?

How are intuitive mental models of
Newtonian physics implemented in
the neural circuitry of the brain?

To what extent can learning-based
models (such as deep-learning models
and other neural networks) emulate
physical knowledge and explain intui-
tive physics?
However, the PhysNet model would have difficulty generalizing to situations that are more
dissimilar to the training examples (e.g., the trajectory of a thrown object). In addition, unlike
developing infants, the model requires several thousands of training examples to abstract basic
physical knowledge about the environment. Future research will determine whether learning-
based pattern recognition networks can be utilized to extract generalizable physical knowledge
from perceptual inputs.

Concluding Remarks and Future Prospects
The field of intuitive physics in the past three decades has benefited from advances on several
fronts: stimulus displays (from static diagrams to vivid dynamic animations controlled by
computer graphics), computational theory (from heuristic accounts to a parsimonious frame-
work based on probabilistic mental stimulation), and choice of physical situations to study (from
a near-exclusive focus on the movement of solid objects to the behaviors of non-rigid fluids).
The field now provides a model domain for quantitatively exploring the complex interrelation-
ships between perception and reasoning.

Work guided by knowledge-based and learning-based approaches to intuitive physics sug-
gests that a human intuitive-physics module integrates perceptual and reasoning processes to
infer the behavior of physical situations. However, a great deal of future work will be necessary
to develop a learnable and generalizable model of intuitive physical inference (see Outstanding
Questions). Research on probabilistic simulation indicates that human predictions about
physical situations are consistent with probabilistic inference. Nevertheless, such models
require a vast number of simulations based on ‘hard-coded’ normative physical constraints
to generate predicted response distributions [8,13,26,30–32]. On the face of it, such compu-
tational complexity appears prohibitively demanding for the cognitive system [55]. Moreover,
these models do not provide a full account of how physical principles can be learned through
experience [56], nor of how such principles might be implemented in neural circuitry [17].
Nonetheless, recent advances constitute progress towards developing a machine that can
perceive, reason about, and interact with physical entities.
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