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Supplemental information: Formal Description of BART Model

1 Notation and formulation

The training dataset includes a set of word pairs paired with their relations. In the training stage,
the model learns the mapping between the pairs of words and their relations, so that in the testing
stage, for a new pair of words, the model can predict their relation. In mathematical notation,
suppose there are M types of relations. For a pair of words (a1, a2), let Ri = 1 if (a1, a2) instantiates
the i-th relation, and Ri = −1 otherwise, where i = 1, ...,M . We want to learn a mapping function
h from (a1, a2) to Ri. In a probabilistic formulation, the mapping predicts the probability that
Ri = 1 for a pair of words, i.e., h(a1, a2) = Pr(Ri = 1|a1, a2).

Given a finite number of training examples D = {(a1, a2, Ri)}, in order to learn the mapping
function h(), we need to express h() in a parametric form: Pr(Ri = 1|a1, a2) = h(a1, a2; θ), where
θ denotes the vector of parameters. In logistic regression (or more generally a neural network), θ
collects the weight parameters (as well as bias terms). The goal of learning is to estimate θ from
the training data D, so that the learned θ can be used to predict Ri for a new pair of words in the
testing stage.

2 Bayesian learning

We adopt a Bayesian approach, where we assume a prior distribution p(θ). The learning of θ is
based on the posterior distribution p(θ|D) = p(θ)p(D|θ)/p(D), from the Bayes rule. After learning
θ from the training dataset D, for a new pair of words (a1, a2) the prediction of Ri can be based on

Pr(Ri = 1|a1, a2, D) =

∫
Pr(Ri = 1|a1, a2, θ)p(θ|D)dθ, (1)

where we integrate out θ. The integration can be approximated by Monte Carlo samples from
p(θ|D), or by a variational method.

The Bayesian approach has the following advantages.
(1) We can incorporate prior knowledge into p(θ). In fact, p(θ) may well be the posterior

distribution learned from the past data D0, i.e., p(θ|D0), and p(θ|D) is actually the updated
posterior distribution

p(θ|D,D0) =
p(D|θ)p(θ|D0)

p(D|D0)

=
p(D|θ)p(θ|D0)∫
p(D|θ)p(θ|D0)dθ

∝ p(D|θ)p(θ|D0), (2)

where we assume p(D|θ,D0) = p(D|θ), or equivalently p(D,D0|θ) = p(D|θ)p(D0|θ). As shown in
the simulations reported in the main text, the incorporation of prior knowledge p(θ) enables the
model to learn from small training data.
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(2) The prediction in equation (1) averages out the posterior uncertainty p(θ|D). Such model
averaging is used in the model proposed in the present paper. It avoids overfitting and often leads
to more accurate predictions of performance compared to methods based on a point estimate θ̂.

There are two commonly used implementation methods for Bayesian learning. One is to design
a Markov chain Monte Carlo (MCMC) method to draw samples from p(θ|D). The other is to
design a simpler approximated distribution qφ(θ) parameterized by φ, and estimate φ by minimizing
the Kullback-Leibler divergence DKL(qφ(θ)||p(θ|D)) = Eqφ [log(qφ(θ)/p(θ|D))]. The latter method,
called variational Bayes, is used by the BART model.

3 BART model

The BART model can be defined as a multi-layer network of the following form, as illustrated in
Figure 1 in the paper:

f′1 = (f1, τ(f1)); f
′
2 = (f2, τ(f2)) (3)

fs = (s(f′1), s(f
′
2)) (4)

Pr(Ri = 1|fs,w) = 1/[1 + exp(−f>s w)]. (5)

Below we explain the equations in detail.
(1) Semantic feature vectors. For a word a, we can represent it in a d-dimensional semantic

space, e.g., d = 300, to obtain a feature vector f . In the BART model, the semantic feature vectors
for individual words are adopted from an embedding matrix derived by the Word2vec model [13,14].
The embedding matrix V is a d×N matrix, where N is the number of words in the dictionary. The
Word2vec model can be viewed as a two-layer network, including an encoder, f = V a, which encodes
the one-hot vector a of the input word into a vector f, and a decoder g = U>f, which decodes f into
an N dimensional vector g, where U is another d×N matrix, to predict the probability distribution
of the neighboring words in the text. The embedding matrices (V,U) are learned from big data
in a large corpus of text (e.g., Google News corpus). Let V = (V1, ..., Vj , ..., VN ), where Vj is the
j-th column vector of V . If a is the j-th word in the dictionary, its feature vector can be readily
produced from the learned embedding matrix as f = Vj .

(2) Stage 1: Feature alignment (Eq.3) . For a word a, its embedding f is a d dimensional
vector, and each dimension of f encodes a different aspect of the semantic meaning of a. For a pair
of words (a1, a2), let their embeddings be f1 = (f11, ..., f1k, ...., f1d) and f2 = (f21, ..., f2k, ...., f2d).
For different pairs (f1, f2), the relation Ri may be relevant to different semantic dimensions. For
example, love and hate are related on a dimension of emotional attitude, but rich and poor are
related on economic status. As a heuristic to align these dimensions, we re-order the dimensions
of (f1, f2) according to the rank of differences between the two vectors. Let ∆ = (∆1 = f11 −
f21, ...,∆k = f1k − f2k, ...,∆d = f1d − f2d) be the element-wise differences. We can order the
components of ∆ so that ∆τ(1) ≥ ∆τ(2) ≥ ... ≥ ∆τ(d), where (τ(i), i = 1, ..., d) is a permutation of
(1, ..., d). We define τ(f1) = (f1τ(1), ..., f1τ(k), ..., f1τ(d)) and τ(f2) = (f2τ(1), ..., f2τ(k), ...., f2τ(d)). We
then concatenate f1 and τ(f1) to get the augmented vector f′1 = (f1, τ(f1)) for the first word in a
pair. Similarly we get f′2 = (f2, τ(f2)) for the second word.

If we had much larger training data (rather than just 20 word pairs per relation as in the
current paper), the model could in principle learn the alignment re-ordering function τ by some
form of attention model. For example, for each pair (f1, f2), the model could evaluate the functional
importance of semantic features for signaling relations between the two words, and pay different
amounts of attention to specific dimensions according to their importance.
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(3) Stage 2: Feature selection (Eq.4). The dimensionality of (f′1, f
′
2) may be too high for the

available training data (i.e., 20 positive examples per relation). It is preferable to reduce the
dimensionality of (f′1, f

′
2) in order to avoid overfitting. The dimensionality of f′1 = (f1, τ(f1)) is

2d, as is the dimensionality of f′2. Thus there are a total of 4d components in (f′1, f
′
2) (i.e., 1200

dimensions in the present paper). Among these 4d components, we only select a small number of
components for predicting a specific relation Ri. Such a variable selection step is accomplished by
fitting a `1 regularized logistic regression on the augmented difference vector {(f′1 − f′2, Ri)}, which
minimizes

∑
D log(1 + exp(−Ri(f′1 − f′2)

>β)) + (1 − λ)‖β‖2`2/2 + λ‖β‖`1 , where
∑

D denotes the
summation over the training examples, (f′1 − f′2) is the difference vector, and β is the coefficient
vector of the same dimensionality as (f′1 − f′2). ‖β‖`1 is the `1 norm of β,(i.e., the sum of absolute
values of β), and‖β‖2`2 is the `2 norm of β (i.e., the sum of squared values of β). The `1 norm is
known to induce sparsity of the learned β, so that only a small number of components of β are non-
zero. λ is the tuning constant, set to .5 in the BART model. We then select those feature dimensions
for which the corresponding components of β are non-zero, and form the vector fs = (s(f′1), s(f

′
2)),

where s() stands for feature selection.
(4) Stage 3: Relational weight distribution through Bayesian learning (Eq.5). After obtaining

selected feature vectors fs, we then fit a Bayesian logistic regression on {(fs, Ri)} using BART.
The log posterior distribution is log p(w|D) = −

∑
D log(1 + exp(−fTs w)) + log p(w), where p(w)

is the prior distribution of the weight parameter w. The prior distribution p(w) is defined as a
multivariate normal distribution, N(µ0,Σ0), with a mean vector µ0 = (β,−β), consisting of the
weights β estimated in stage 2 for the dimensions linked with the first word, and the opposite
weights −β for the dimensions linked with the second word. The covariance matrix is defined by an
Inverse-Gamma distribution with the two hyperparameters (a, b). The simulation sets the initial
values of the two hyperparameters as (a0 = 1, b0 = 5), as in earlier work [10].

We approximate p(w|D) by a variational posterior distribution using the variational Bayes ap-
proach. The BART model could be implemented using other inference methods based on Markov
chain Monte Carlo sampling, though these would take longer to converge. We employed the vari-
ational method developed by Jaakkola and Jordan [28] for Bayesian logistic regression to obtain a
closed-form approximation to the posterior distribution for stage 3 in BART model. Variational
methods are a family of methods that transform the problem of interest into an optimization prob-
lem by introducing an extra variational parameter, which is iteratively adjusted to successively
improve approximations. The input to the learning model includes training data with K examples,
composed of training data xk and their corresponding relation labels Rk in which 1 indicates that
the pair of words instantiates the relation (positive examples), and -1 indicates it does not (negative
examples). The variational method iteratively updates the mean µ and the covariance matrix V
for the multivariate normal distribution using the following updating equations during learning:

V−1 = A + 2
∑
k

λ(ζk)xkx
T
k ) (6)

µ = V(Aµ0 +
∑
k

Rkxk/2) (7)

a = a0 + 1/2 (8)

bi = b0 + ((wi − µ0i)2 + Vii)/2 (9)

ζk
2 = xTk (V + µµT )xk, (10)

where k indicates the kth training example, wi is the ith element in the weight vector, Vii is
the ith diagonal element of covariance matrix, and A is a diagonal matrix with its ith diagonal
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element given by a/bi. The same updating rule was used by Lu et al. (2012).
The BART model can be viewed as including multiple computational components: semantic

feature extraction, feature aligning, feature selection, and relation prediction. If we had a large
set of training data or constrained relation domains (e.g., the family tree problem considered by
Paccanaro & Hinton [11]), the whole model could in principle be trained end-to-end (i.e., training
the word semantic representations and relation representations at the same time). However, when
restricted to smaller training data for relations, we may separate the learning of the representational
layers. Semantic word features can be learned from long-term experience or large text corpora,
whereas the other components can be learned from small data consisting of dozens of word pairs
instantiating a relation. The present paper takes the latter approach.
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Supplemental Information   

Pseudo-code for BART Learning Algorithm 

f1, f2 are the input word vectors from Word2vec embeddings 

 

for each relation i  1 

 construct positive examples and negative examples 2 

 do < feature augmentation > 3 

  for each word pair j 4 

   compute difference vector f1- f2 5 

   rank order difference features rank(f1- f2) 6 

concatenate difference vectors  7 

concatenate raw vectors and ranked vectors  8 

  end for 9 

   10 

 do < feature selection > 11 

  input concatenated difference vectors from the training data 12 

  run lassoglm with Elastic-Net regularization 13 

  output selected feature dimensions as s(.) and associated coefficients β 14 

  construct selected feature vectors  15 

 16 

 do < variational Bayesian learning > 17 

  input selected feature vectors from the training data, regression coefficients 18 

  compute empirical prior [β, - β] 19 

  run variational Bayesian learning 20 

  output posterior distribution of weights 21 

 22 

end for 23 
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Overview of SemEval-2012 Task-2 Dataset 

The norms (22) for the 79 relations were created by having an initial group of 

participants recruited via Amazon Mechanical Turk generate word pairs exemplifying each 

relation. A small number of paradigmatic examples were provided as seeds to guide 

participants. For example, the relation reverse was exemplified by the pairs attack-defend, 

buy-sell and love-hate. The set of word pairs generated by the first group was then used to 

construct a task for a second group of participants, who judged the typicality of examples. 

Specifically, the second group was assigned the task of choosing the “most illustrative” and 

“least illustrative” examples of a relation from sets of four alternatives. Approximately 50,000 

responses were collected using Mechanical Turk. 

  Participants’ responses were then submitted to an algorithm (MaxDiff, also termed 

Best-Worst Scaling; see (25)) for computing similarities between examples to create a set of 

word pairs ordered by prototypicality for each of the 79 relations in the dataset. For example, 

the list for the taxonomic relation includes 41 word pairs, ranging from weapon:spear and 

tree:oak with high typicality ratings, to school:university and politician:senator with low 

typicality ratings. The contradictory relation includes hot:cold and rich:poor with high 

ratings, and cold:warm and gaseous:solid with low ratings.  
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Supplemental Table S1  
 
Examples of relation pairs from norms (22): five most prototypical examples of one specific 

relation (italics) for each of ten relation types (bold).  

 

Relation type Examples     

Class inclusion 
(Taxonomic) 

weapon:spear tree:oak animal:pig bird:robin vegetable:carrot 

Part-whole 
(Object:Component) 

hand:finger egg:yolk foot:toe tree:branch house:room 

Similar 
(Synonymity) 

house:home kid:child raise:elevate teach:instruct big:large 

Contrast 
(Contradictory) 

hot:cold full:empty rich:poor young:old dry:wet 

Attribute 
(Item:Attribute) 

fire:hot villain:evil water:wet tycoon:wealthy snow:cold 

Notattribute 
(Item:Nonattribute) 

fire:cold 
rainbow: 
monochromatic 

darkness:light ecstasy:sad liar:honest 

Case relation 
(Agent:Object) 

spinner:yarn weaver:cloth baker:bread 
architect: 
building 

writer:pen 

Cause-purpose 
(Cause:Effect) 

loss:grief injury:pain 
disease: 
sickness 

explosion: 
damage 

accident:damage 

Space-time 
(Item:Location) 

library:books forest:trees school:student zoo:animals garden:flower 

Reference 
(Sign:Significant) 

crown:royalty badge:authority smoke:fire smile:happiness license:permission 
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Supplemental Table S2 

UCLA Verbal Analogy Test Problems 

Relation: Categorical  
    A B C D C D' 

vegetable cabbage insect beetle insect frog 

insect bee fish halibut fish water 

flower rose bird pigeon bird nest 

bird wren insect mosquito insect sting 

vegetable lettuce bird sparrow bird cat 

sport soccer vehicle bus vehicle engine 

weapon pistol clothing shoes clothing cotton 

sport tennis weapon gun weapon murder 

furniture sofa sport golf sport coat 

tool pliers vehicle van vehicle fuel 

clothing trousers fish cod fish net 

fruit banana furniture dresser furniture house 

fish shark sport baseball sport team 

fruit plum clothing coat clothing silk 

flower carnation tool hacksaw tool carpenter 

bird crow sport football sport stadium 

weapon sword flower daffodil flower vase 

clothing jacket bird pigeon bird dog 

furniture table fruit pear fruit tree 

clothing jeans vegetable potato vegetable apple 

      

      Relation: Function  
    A B C D C D' 

fly bird hop rabbit hop leg 

build house dig hole dig shovel 

sing song ride horse ride rider 

hear ear wear clothes wear woman 

drive car burn wood burn fire 

open door touch hands touch doctor 

squeeze juice shoot gun shoot miss 

cut knife hit hammer hit nail 

throw ball open envelope open close 

read magazine play football play kids 

carry suitcase sit chair sit job 

drink glass cook pan cook chef 

burn fire blow wind blow down 

ski snow swim water swim swimmer 
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tell story fight battle fight soldier 

run horse pull tractor pull muscle 

write poem carve statue carve knife 

ride bicycle drink cup drink water 

throw ball jump parachute jump walk 

ride elevator sail boat sail wind 

      

      Relation: Opposite  
    A B C D C D' 

artificial natural friend enemy friend relative 

love hate rich poor rich wealthy 

alive dead succeed fail succeed conquer 

ugliness beauty joy sorrow joy emotion 

huge tiny arrive depart arrive come 

somber cheerful lawyer client lawyer doctor 

late early win lose win capture 

quick slow grow wither grow plant 

antonym synonym selfish generous selfish egocentric 

quiet noisy last first last final 

start stop trivial important trivial famous 

laugh cry cheap expensive cheap inexpensive 

accept reject dark bright dark dim 

abundant scarce agree disagree agree concur 

hero coward strong weak strong muscular 

teacher student calm stormy calm serene 

give take allow forbid allow permit 

clean dirty awake alseep awake alert 

remember forget increase decrease increase lengthen 

crazy sane bent straight bent crooked 

      

      Relation: Synonym  
    A B C D C D' 

easy simple sad unhappy sad happy 

hurry rush harm injure harm help 

rob steal cry weep cry laugh 

polite courteous angry furious angry happy 

beginner novice doctor physician doctor heal 

baby infant woman lady woman girl 

brook stream courage bravery courage cowardice 

huge enormous wealthy rich wealthy poor 

cheerful happy awful horrible awful wonderful 

remain stay begin start begin continue 
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unusual strange famous renowned famous unknown 

sick ill little small little big 

legal lawful usual normal usual strange 

collect gather leave abandon leave stay 

clean neat fortunate lucky fortunate miserable 

immense colossal precise exact precise approximate 

stone rock garbage trash garbage bag 

help aid raise lift raise lower 

rug carpet bucket pail bucket milk 
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Supplemental Figure S1 

    

Figure S1. Learning curves for BART. A: Correlation between human typicality ratings and 

BART predictions as a function of number of positive examples used in training. B: Overall 

proportion of VAT problems solved correctly by BART as a function of number of positive 

examples used in relation training. On both graphs Word2vec performance is plotted for 

comparison. 

 

  

B A 
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Comparisons of BART Model with Control Simulations 

A number of model variants were implemented and tested in order to isolate the 

impact of individual components of the BART model on analogy performance. These 

simulation results are summarized in Figure S2, which presents the overall performance of 

each model on the VAT set of verbal analogies. In addition to the baseline Word2vec model, 

we tested a feedforward neural network with a hidden layer. This feedforward neural network 

included an input layer with 600 units representing semantic features taken from Word2vec 

for the two words in a pair, a hidden layer with 10 units, and an output layer indicating 

whether the input word pair instantiates a specific relation. All relations shared the same 

network architecture, but were trained separately (using Matlab default function of 

feedforwardnet), with the same inputs as used to train BART. The MATLAB implementation 

of the feedforward neural network training is shown in the text box below. 

 
The feedforward neural network for each relation predicts the probability that the relation is 

instantiated by an input word pair. These predicted probabilities were then used to create a 

distributed relation vector (analogous to that formed using BART). To solve each analogy 

problem, relational similarity was then calculated in the same way as for BART. Analogy 

performance based on this feedforward network was extremely poor (51%), less than achieved 

by Word2vec itself. 

We also tested five variants of BART. Each was designed to assess the importance of 

a specific component of the BART model, by altering or removing a single component while 

keeping the rest of the model identical to full BART. The first two controls targeted the 

importance of using Bayesian inference with contrast-based priors in the final phase of 

learning (stage 3). Control 1 replaced BART’s stage 3 by regularized regression (i.e., 

estimating mean weights only, rather than full weight distributions, without priors). 

Specifically, we removed the computation indicated in the BART pseudo-code by lines 17-21, 

replacing it with the Matlab function of "lassoglm" to implement the control model. Control 2 

used Bayesian regression in stage 3 but with an uninformative prior (zeros as mean values in 

the prior distribution). Specifically, we used a zero vector to replace line 19 in the BART 

pseudo-code, while maintaining all the other computations. Controls 1 and 2 achieved 

correlations with human typicality judgments comparable to full BART, but performance on 

the verbal analogy test dropped by about 20%. 

Controls 3 and 4 respectively assessed the importance of using raw and ranked 

dimensions in stage 1, in which BART remaps features to address the feature alignment 

problem. In Control 3, we removed raw vectors and only kept ranked vectors in line 8 of the 

BART pseudo-code, thereby simulating an otherwise-identical model lacking raw dimensions 

            hidunits = 10;   

            net = feedforwardnet(hidunits); 

            net = train(net,X,T); 

            pred_prob_pos = net(test_data); 
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(i.e., using ranked dimensions only). The Control 3 simulation showed significantly reduced 

performance on the verbal analogy test (a decline of 24%). In Control 4, designed to be 

complementary to the Control 3 simulation, we removed ranked feature dimensions (i.e., 

using raw dimensions only) in line 8 of the BART pseudo-code. In Control 4 performance on 

the verbal analogy test was reduced by 9%. These results show that raw dimensions contain 

information that is very important for solving analogies (Control 3), but that ranked 

dimensions are also important (Control 4).  The BART model is able to provide a partial 

solution to the feature alignment problem by combining information captured in the raw 

semantic vectors created by Word2vec with information captured in ranked dimensions.  

Control 5 assessed whether the specific semantic space provided by the Word2vec 

model is important for success in analogical reasoning with abstract relations. We applied a 

randomly-generated orthogonal transformation to all the Word2vec input vectors (a change 

that does not affect the performance of Word2vec itself). The BART model was then trained 

and tested using these transformed feature vectors as inputs, in a manner otherwise identical to 

the BART simulation using the original Word2vec inputs. Using these transformed inputs 

caused BART’s performance on the VAT to drop by 10%. The results from Control 5 imply 

that the original Word2vec word space is especially effective in providing semantic 

knowledge that enables relation learning.  

 

Supplemental Figure S2 

 

Figure S2. Proportion of correct solutions to UCLA Verbal Analogy Test problems achieved by BART 

and by several simulations based on control models (see description above).  
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