
Abstract: We support Enlightenment Bayesianism’s commitment to
grounding Bayesian analysis in empirical details of psychological and
neural mechanisms. Recent philosophical accounts of mechanistic
science illuminate some of the challenges this approach faces. In
particular, mechanistic decomposition of mechanisms into their
component parts and operations gives rise to a notion of levels distinct
from and more challenging to accommodate than Marr’s.

We find attractive Enlightenment Bayesianism’s commitment to
grounding Bayesian analysis in knowledge of the neural and
psychological mechanisms underlying cognition. Our concern is
with elucidating what the commitment to mechanism involves.
While referring to a number of examples of mechanistic accounts
in cognitive science and ways that Bayesians can integrate
mechanistic analysis, Jones & Love (J&L) say little about the
details of mechanistic explanation. In the last two decades,
several philosophers of science have provided accounts of
mechanistic explanation and mechanistic research as these
have been practiced in biology (Bechtel & Abrahamsen 2005;
Bechtel & Richardson 1993/2010; Machamer et al. 2000) and
the cognitive sciences (Bechtel 2008; Craver 2007). Drawing
on these can help illuminate some of the challenges of integrating
mechanistic analysis into Bayesian accounts.
At the core of mechanistic science is the attempt to explain how

a mechanism produces a phenomenon by decomposing it into its
parts and operations and then recomposing the mechanism to
show how parts and operations are organized, such that when
the mechanism is situated in an appropriate environment, it gen-
erates the phenomenon. One of the best-developed examples in
cognitive science is the decomposition of visual processing into a
variety of brain regions, each of which is capable of processing
different information from visual input. When organized together,
they enable individuals to acquire information about the visible
world. Decomposition can be performed iteratively by treating
the parts of a given mechanism (e.g., V1) as themselves mechan-
isms and decomposing them into their parts and operations.
A hierarchical ordering in which parts are at a lower level than

the mechanism is thus fundamental to a mechanistic perspective.
This notion of levels is importantly different from that advanced by
Marr (1982), to which J&L appeal, which does not make central
the decomposition of a mechanism into its parts and operations.
To illustrate the mechanistic conception of levels in terms of math-
ematical accounts, it is often valuable to provide a mathematical
analysis of the phenomenon for which the mechanism is respon-
sible. In such an account (e.g., the Haken-Kelso-Bunz [HKB]
model of bimanual cordination described by Kelso 1995), the vari-
ables and parameters refer to characteristics of the mechanism as a
whole and aspects of the environment with which the mechanism
interacts. But to explain how such a mechanism functions one
must identify the relevant parts and their operations. The function-
ing of these parts and operations may also require mathematical
modeling (especially when the operations are nonlinear and the
organization non-sequential; see Bechtel & Abrahamsen 2010).
These models are at a lower level of organization and their parts
and operations are characterized in a different vocabulary than
that used to describe the phenomenon (as the objective is to
show how the phenomenon is produced by the joint action of
parts that alone cannot produce it).
We can now pose the question: At what level do Enlightenment

Bayesian accounts operate? Do they, like Bayesian Fundamentalist
accounts, operate at the level of the whole person, where the
hypothesis space reflects people’s actual beliefs? Beliefs are most
naturally construed as doxastic states of the person that arise from
the execution of various operations within the mind/brain. J&L’s
invocation of Gigerenzer’s work on cognitive heuristics (e.g., Giger-
enzer & Todd 1999) suggests this is a perspective they might
embrace – the heuristics are inference strategies of agents and do
not specify the operations that enable agents to execute the heuris-
tics. The resulting Bayesian model may reflect but does not directly
embody the results of decomposing the mind into the component
operations that enable it to form beliefs.

Another possibility is that the Bayesian hypothesis space might
directly incorporate details of the operations performed by com-
ponents (e.g., brain regions identified in cognitive neuroscience
research). Now an additional question arises – with respect to
what environment is optimization evaluated? Since we are
working a level down from the whole mechanism, one might think
that the relevant environment is the internal environment of the
local component (comprising other neural components). But this
seems not to be the strategy in the research J&L cite (Beck et al.
2008; Wilder et al. 2009). Rather, optimization is still with respect
to the task the agent performs. In Beck et al.’s account, a brain
region (lateral intraparietal cortex: LIP) is presented as computing
a Bayesian probability. This directly links the Bayesian account to
parts of the mechanism, but if this approach is to be generalized,
it requires that one find brain components that are computing Baye-
sian probabilities in each instance one applies a Bayesian analysis.
Although we find the prospect of integrating mechanistic and

Bayesian approaches attractive, we are unclear how the results
of mechanistic decomposition – which often leave the agent-
level representations behind to explain how they are realized
through a mechanism’s parts and operations characterized in a
different vocabulary than that which characterizes the agent’s
beliefs – are to be incorporated into a Bayesian account. We
suspect that the most promising strategy is more indirect: Mechan-
istic research at lower levels of organization helps constrain the
account of knowledge possessed by the agent, and Bayesian infer-
ence then applies to such agent-level representations.
A further challenge for understanding how mechanism fits into

Bayesian analysis stems from the fact that Bayesian analyses are
designed to elicit optimal hypotheses. As J&L note, mechanisms,
especially when they evolve through descent with modification,
are seldom optimal. What then is the point of integrating
mechanistic accounts into normative Bayesian models? One
possibility is that the normative accounts serve as discovery heur-
istics – mismatches between the normative model and cognitive
agents’ actual behavior motivate hypotheses as to features of the
mechanism that account for their limitations. While this is plaus-
ible, we wonder about its advantages over investigating the
nature of the mechanism more directly, by studying its current
form or by examining how it evolved through a process of
descent with modification. Often, understanding descent
reveals how biological mechanisms have been kludged to
perform a function satisfactorily but far from optimally.
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Abstract: The field of causal learning and reasoning (largely overlooked
in the target article) provides an illuminating case study of how the
modern Bayesian framework has deepened theoretical understanding,
resolved long-standing controversies, and guided development of new
and more principled algorithmic models. This progress was guided in
large part by the systematic formulation and empirical comparison of
multiple alternative Bayesian models.

Jones & Love (J&L) raise the specter of Bayesian Fundamentalism
sweeping through cognitive science, isolating it from algorithmic
models and neuroscience, ushering in a Dark Ages dominated
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by an unholy marriage of radical behaviorism with evolutionary
“just so” stories. While we agree that a critical assessment of the
Bayesian framework for cognition could be salutary, the target
article suffers from a serious imbalance: long on speculation
grounded in murky metaphors, short on discussion of actual appli-
cations of the Bayesian framework to modeling of cognitive pro-
cesses. Our commentary aims to redress that imbalance.
The target article virtually ignores the topic of causal inference

(citing only Griffiths & Tenenbaum 2009). This omission is odd,
as causal inference is both a core cognitive process and one of the
most prominent research areas in which modern Bayesian
models have been applied. To quote a recent article by
Holyoak and Cheng in Annual Review of Psychology, “The
most important methodological advance in the past decade in
psychological work on causal learning has been the introduction
of Bayesian inference to causal inference. This began with the
work of Griffiths & Tenenbaum (2005, 2009; Tenenbaum & Grif-
fiths 2001; see also Waldmann & Martignon 1998)” (Holyoak &
Cheng 2011, pp. 142–43). Here we recap how and why the
Bayesian framework has had its impact.
Earlier, Pearl’s (1988) concept of “causal Bayes nets” had

inspired the hypothesis that people learn causal models
(Waldmann & Holyoak 1992), and it had been argued that causal
induction is fundamentally rational (the power PC [probabilistic
contrast] theory of Cheng 1997). However, for about a quarter
century, the view that people infer cause-effect relations from
non-causal contingency data in a fundamentally rational fashion
was pitted against a host of alternatives based either on heuristics
and biases (e.g., Schustack & Sternberg 1981) or on associative
learning models, most notably Rescorla andWagner’s (1972) learn-
ing rule (e.g., Shanks & Dickinson 1987). A decisive resolution of
this debate proved to be elusive in part because none of the com-
peting models provided a principled account of how uncertainty
influences human causal judgments (Cheng & Holyoak 1995).
J&L assert that, “Taken as a psychological theory, the Bayesian

framework does not have much to say” (sect. 2.2, para. 3). In fact,
the Bayesian framework says that the assessment of causal
strength should not be based simply on a point estimate, as had
previously been assumed, but on a probability distribution that
explicitly quantifies the uncertainty associated with the estimate.
It also says that causal judgments should depend jointly on prior
knowledge and the likelihoods of the observed data. Griffiths and
Tenenbaum (2005) made the critical contribution of showing that
different likelihood functions are derived from the different
assumptions about cause-effect representations postulated by
the power PC theory versus associative learning theory. Both the-
ories can be formulated within a common Bayesian framework,
with each being granted exactly the same basis for representing
uncertainty about causal strength. Hence, a comparison of
these two Bayesian models can help identify the fundamental
representations underlying human causal inference.
A persistent complaint that J&L direct at Bayesian modeling is

that, “Comparing multiple Bayesian models of the same task is
rare” (target article, Abstract); “[i]t is extremely rare to find a com-
parison among alternative Bayesian models of the same task to
determine which is most consistent with empirical data” (sect. 1,
para. 6). One of J&L’s concluding admonishments is that, “there
are generally many Bayesian models of any task. . . . Comparison
among alternative models would potentially reveal a great deal”
(sect. 7, para. 2). But as the work of Griffiths and Tenenbaum
(2005) exemplifies, a basis for comparison of multiple models is
exactly what the Bayesian framework provided to the field of
causal learning.
Lu et al. (2008b) carried the project a step further, implement-

ing and testing a 2�2 design of Bayesian models of learning causal
strength: the two likelihood functions crossed with two priors
(uninformative vs. a preference for sparse and strong causes).
When compared to human data, model comparisons established
that human causal learning is better explained by the assumptions
underlying the power PC theory, rather than by those underlying

associative models. The sparse-and-strong prior accounted for
subtle interactions involving generative and preventive causes
that could not be explained by uninformative priors.
J&L acknowledge that, “An important argument in favor of

rational over mechanistic modeling is that the proliferation of
mechanistic modeling approaches over the past several decades
has led to a state of disorganization” (sect. 4.1, para. 2).
Perhaps no field better exemplified this state of affairs than
causal learning, which had produced roughly 40 algorithmic
models by a recent count (Hattori & Oaksford 2007). Almost
all of these are non-normative, defined (following Perales &
Shanks 2007) as not derived from a well-specified computational
analysis of the goals of causal learning. Lu et al. (2008b) com-
pared their Bayesian models to those which Perales and Shanks
had tested in a large meta-analysis. The Bayesian extensions of
the power PC theory (with zero or one parameter) accounted
for up to 92% of the variance, performing at least as well as the
most successful non-normative model (with four free par-
ameters), and much better than the Rescorla-Wagner model
(see also Griffiths & Tenenbaum 2009).
NewBayesianmodels of causal learning have thus built upon and

significantly extended previous proposals (e.g., the power PC
theory), and have in turn been extended to completely new areas.
For example, the Bayesian power PC theory has been applied to
analogical inferences based on a single example (Holyoak et al.
2010). Rather than blindly applying some single privileged Bayesian
theory, alternative models have been systematically formulated and
compared to human data. Rather than preempting algorithmic
models, the advances in Bayesian modeling have inspired new
algorithmic models of sequential causal learning, addressing
phenomena related to learning curves and trial order (Daw et al.
2007; Kruschke 2006; Lu et al. 2008a). Efforts are under way to
link computation-level theory with algorithmic and neuroscientific
models. In short, rather thanmonolithic Bayesian Fundamentalism,
normal science holds sway. Perhaps J&L will happily (if belatedly)
acknowledge the past decade of work on causal learning as a shining
example of “Bayesian Enlightenment.”
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Abstract: According to Jones & Love (J&L), Bayesian theories are too
often isolated from other theories and behavioral processes. Here, we
highlight examples of two types of isolation from the field of word
learning. Specifically, Bayesian theories ignore emergence, critical to
development theory, and have not probed the behavioral details of
several key phenomena, such as the “suspicious coincidence” effect.

A central failing of the “Bayesian Fundamentalist” perspective, as
described by Jones & Love (J&L), is its isolation from other
theoretical accounts and the rich tradition of empirical work in
psychology. Bayesian fundamentalists examine phenomena
exclusively at the computational level. This limits contact with
other theoretical advances, diminishing the relevance and
impact of Bayesian models. This also limits Bayesians’ concern
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