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Inferential Dependencies in Causal Inference:
A Comparison of Belief-Distribution and Associative Approaches

Christopher D. Carroll, Patricia W. Cheng, and Hongjing Lu
University of California, Los Angeles

Causal evidence is often ambiguous, and ambiguous evidence often gives rise to inferential dependen-

cies, where learning whether one cue causes an effect leads the reasoner to make inferences about

whether other cues cause the effect. There are 2 main approaches to explaining inferential dependencies.

One approach, adopted by Bayesian and propositional models, distributes belief across multiple expla-

nations, thereby representing ambiguity explicitly. The other approach, adopted by many associative

models, posits within-compound associations—associations that form between potential causes—that,

together with associations between causes and effects, support inferences about related cues. Although

these fundamentally different approaches explain many of the same results in the causal literature, they

can be distinguished, theoretically and experimentally. We present an analysis of the differences between

these approaches and, through a series of experiments, demonstrate that models that distribute belief

across multiple explanations provide a better characterization of human causal reasoning than models that

adopt the associative approach.
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Causal evidence is often ambiguous. When trying to identify the

cause of a recent illness, the reason why a friend failed to return a

phone call, or the cause of a car accident, possible explanations

abound. In such situations, subsequent learning about one of the

possible causes may support inferences about the other possible

causes. Consider, for example, a traveler who becomes ill after a

flight where he ate a suspect meal and sat next to a coughing

passenger. His illness may have been caused by the meal or by his

coughing neighbor. After learning that other passengers who ate

the inflight meal did not become ill, the traveler would probably

conclude that the cause was his coughing neighbor. In such cir-

cumstances, it seems as if the traveler retrospectively reevaluates

the ambiguous initial evidence (the two plausible causes of his

illness) in light of the subsequent evidence (the harmlessness of the

inflight meal). Consequently, the inference is said to involve

retrospective revaluation (e.g., Van Hamme & Wasserman, 1994).

More generally, we say that there is an inferential dependency

between two possible causes when learning about one of them can

support an inference regarding the other.

How should we explain inferential dependencies in causal rea-

soning? There are two main approaches to the problem. The

associative approach explains inferential dependencies by utilizing

within-compound associations—associations that form between

potential causes, in addition to the typical associations between

each cause and its effect (e.g., Dickinson & Burke, 1996; Stout &

Miller, 2007; Van Hamme & Wasserman, 1994). Within-

compound associations are assumed to form when potential causes

co-occur, as is typically the case when there is confounding and

thus the evidence is ambiguous. The association between co-

occurring cues—say, potential causes c1 and c2—allows the

weight of the association between c1 and the effect e to be updated

for events (trials) on which c1 is absent; when c2 occurs, its

activation can activate c1 via the within-compound association.

This is unlike in typical associative models, in which only cues that

are present are activated and eligible for updating. The within-

compound association thereby provides a representation for ex-

plaining inferential dependencies in situations involving ambigu-

ity. For example, an associative model might posit that the

traveler’s meal and the coughing neighbor are associated through

a within-compound association. The within-compound association

could be used to support the inference that, if one of the cues is not

causal, then the other should be. Note, however, that at any given

moment, an associative network, regardless of whether it supports

within-compound associations, is in a single state where each

associative strength is estimated by a single value.

Thus, various alternative explanations of ambiguous evidence

would have to map onto the same state of an associative network.

In other words, the approach does not provide a means for repre-

senting multiple explanations at the same time. For example,

consider a series of trials in which two cues, A and B, simultane-

ously occur and a target effect follows. In an associative network,

it seems reasonable to represent this ambiguous evidence by a state

where each of the two cues has a cue–effect association with
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moderate strength. However, consider two explanations of the

ambiguous pattern of events: (a) Both cues cause the effect, each

with a moderate causal strength, or (b) only one cue causes the

effect and that cue causes the effect every time, but it is unknown

which cue is the cause. These explanations are distinct, and they

imply different inferential dependencies. They also involve differ-

ent types of uncertainty: The first involves uncertainty regarding

the causal mechanism (e.g., information on some enabling condi-

tions is missing, so that the cause leads to the effect only some-

times), and the second involves uncertainty regarding which cue is

causal (i.e., causal structure). Yet the representation of the ambig-

uous evidence by a single network state means that there is only a

single cue–effect association for each cue.

Suppose a new trial indicates that introducing Cue A brings

about the effect. For the first explanation, this new information

from the single trial has no significance; both cues remain candi-

date causes. But for the second explanation, the same information

should lead to a revision of belief: Cue B becomes eliminated as a

candidate cause. A single network state cannot capture these

different implications.

In contrast, the belief-distribution approach represents multiple

explanations of ambiguous evidence and distributes belief across

the possible explanations in accordance with the plausibility of

each explanation (e.g., Kruschke, 2008). Returning to our traveler

example, given that the traveler became ill, a belief-distribution

approach may distribute belief across three alternative explana-

tions where the illness is attributed to (a) the inflight meal alone,

(b) the coughing neighbor alone, or (c) both the inflight meal and

the coughing neighbor.1 The belief-distribution approach predicts

that the reasoner should entertain all three explanations at the same

time, each as a distinct possibility with its respective degree of

plausibility, in contrast to the conflation of all possible explana-

tions corresponding to the single state of an associative network at

one moment.

Belief distribution can be formalized in terms of propositional

logic (e.g., De Houwer, Beckers, & Vandorpe, 2005; Lovibond,

2003) or Bayesian inference, where the distribution of belief is

captured by probability distributions over alternative hypotheses

(Jaynes, 2003; see also Duda, Hart, & Stork, 2000). Because

Bayesian models make fine-grained probabilistic predictions that

can be quantitatively compared to the predictions of the associative

models, we focus on Bayesian rather than propositional models

when evaluating the belief-distribution approach. If Bayesian mod-

els account for human judgments better than associative models, it

would indicate that intuitive inferential dependencies involve be-

lief distribution.

Bayesian models, which exemplify the belief-distribution ap-

proach, have been widely used to account for human causal infer-

ence (e.g., Griffiths & Tenenbaum, 2005, 2009; Lu, Yuille, Lilje-

holm, Cheng, & Holyoak, 2008), with greater success than the

most well-known associative learning model, that of Rescorla and

Wagner (R-W) model (Rescorla & Wagner, 1972; for a review, see

Holyoak & Cheng, 2011). However, Bayesian models have not

been directly compared across multiple paradigms to the more

advanced associative models that can explain retrospective reval-

uation. The comparisons have instead focused on a single asso-

ciative model (the R-W model) and a few experimental paradigms

(mostly forward and backward blocking; e.g., Daw, Courville, &

Dayan, 2008; Kruschke, 2008; Lu, Rojas, Becker, & Yuille, 2008;

Sobel, Tenenbaum, & Gopnik, 2004). Moreover, because the typ-

ical Bayesian model differs from the typical associative model not

only in how it represents ambiguous evidence but also along

various other dimensions, a direct comparison between two models

fails to establish why one model might succeed where the other

model fails.

Therefore, although we compare specific models that represent

the belief-distribution and associative approaches, our goal is not

to compare the models per se. Instead, the present article aims to

study a fundamental difference between the associative and belief-

distribution approaches: namely, the difference between the rep-

resentation of ambiguous conclusions in each approach. Previous

discussions of associative models have not been framed in terms of

ambiguous evidence and inferential dependencies, being typically

framed in terms of retrospective revaluation instead. We reframe

the discussion to reveal a basic and general weakness of the

associative approach, with and without within-compound associ-

ations. Toward this end, we compare these approaches from a

computational perspective and develop empirical tests that clearly

differentiate between them. In particular, we consider the impli-

cations of these approaches in situations where (a) there is ambig-

uous evidence, which often creates inferential dependencies, and

(b) the evidence is unambiguous but within-compound associa-

tions predict inferential dependencies.

Previous research indicates that model predictions may depend

on a variation that applies to both Bayesian and associative mod-

els—namely, whether the generating function is linear or noisy-

logical (i.e., noisy-or and noisy-and-not; Cheng, 1997; Griffiths &

Tenenbaum, 2005; Lu, Yuille, et al., 2008). These variants, which

reflect different definitions of independence, specify different

ways of relating causal structures to observations. We consider

both variants of both kinds of models. Thus, our auxiliary goal is

to assess the role of the generating function in explaining inferen-

tial dependencies.

Computational Approaches to Explaining Inferential

Dependencies

We evaluate the belief-distribution and associative approaches

by considering a Bayesian model of causal inference, adapted from

the proposal of Griffiths and Tenenbaum (2005), and contrasting it

with four associative models: the Rescorla-Wagner model (Re-

scorla & Wagner, 1972) and three advanced associative models.

There are significant differences among the three advanced asso-

ciative models; however, all infer a within-compound association

when cues are presented simultaneously and then use the learned

within-compound association to establish an inferential depen-

dency between the cues. Additionally, all of the associative models

share the assumption that the learner forms and updates a single

hypothesis that best “fits” the observed data.

To illustrate the workings of the models, we consider the infer-

ential dependencies created by the ambiguous evidence in varia-

tions of recovery from overshadowing (e.g., Kaufman & Bolles,

1981; Matzel, Schactman, & Miller, 1985) and backward blocking

(e.g., Shanks, 1985). In both paradigms, the initial ambiguous

evidence shows that the effect occurred following the presentation

1 The second explanation from two paragraphs earlier corresponds to the
possibility that either Explanation a or Explanation b here is correct.
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of two cues (AB1). Here and in the rest of this article, the possible

causes and effects that we consider are all binary variables with a

“present” and an “absent” value. Thus, we denote the potential

causes that are present on a trial-type by letters and the presence

and absence of the effect by 1 and –, respectively. In recovery

from overshadowing (AB1 A–), the subsequent A– observation

shows that one of the two cues (labeled A here) does not cause the

effect. In backward blocking (AB1 A1), the subsequent A1

observation shows that one of the cues causes the effect. In studies

of Pavlovian conditioning with rats (e.g., Kaufman & Bolles,

1981; Miller & Matute, 1996) and in studies of human causal

learning (e.g., Larkin, Aitken, & Dickinson, 1998; Shanks, 1985)

with both recovery from overshadowing and backward blocking

paradigms, researchers have found that the ambiguous AB1 trials

can create inferential dependencies between the cues.

Most of the models predict that when compared with a control

condition (AB1), people have a stronger expectation that Cue B

causes the effect in recovery from overshadowing and a weaker

expectation that it does so in backward blocking. However, the

models make different predictions about the degree of uncertainty

regarding whether Cue B causes, or does not cause, the effect in

recovery from overshadowing and in backward blocking.

A Bayesian Model

Figure 1 illustrates how our Bayesian model explains recovery

from overshadowing and backward blocking. When presented with

ambiguous AB1 evidence, the model distributes belief across four

explanations (see the top row of Figure 1). This distribution of

belief implies an inferential dependency between the cues, as

revealed by two unequal conditional probabilities: the probability

that Cue B causes the effect given that Cue A does not cause the

effect, P[B ¡ E | ; (A ¡ E)] 5 .25/(.25 1 .00) 5 1.0 (see the first

and third graphs in the top row of Figure 1), and the probability

that Cue B causes the effect given that Cue A causes the effect,

P(B ¡ E | A ¡ E) 5 .50/(.50 1 .25) ' .67 (see the second and

fourth graphs in the top row of Figure 1). These differing proba-

bilities imply that learning whether Cue A causes the effect pro-

vides information about whether Cue B causes the effect. The final

distribution of belief in recovery from overshadowing (see lower

left graphs in Figure 1) and backward blocking (see lower right

graphs in Figure 1) illustrates the inferences supported by the

inferential dependency.

The Bayesian model that we develop, an extension of Griffiths

and Tenenbaum’s (2005) model, allows the causal links to be

generative or preventive. Like theirs, our model represents each

explanation as a causal graph. In experiments involving preven-

tive causes, we consider causal graphs where each causal link can

be generative, preventive, or nonexistent. In experiments without

preventive causes, we only consider the causal graphs where the

causal links are either generative or nonexistent. Because we only

consider experiments where there are multiple cues and a single

effect, we represent a causal graph as a vector of causal links, l,

letting li 5 1 denote a generative causal relationship between cue

i and the effect, li 5 0 denote the absence of a causal relationship,

and li 5 –1 denote a preventive causal relationship. For n cues,

there are 3n causal graphs to consider when we allow for preven-

tive causation and 2n causal graphs when we do not. We associate

each causal link with a weight that represents the strength of the

causal relationship, and we represent these weights as a vector w,

where 0 # wi # 1 for each wi. For simplicity, we omit consider-

Figure 1. The predictions of the Bayesian model for recovery from overshadowing and backward blocking.

Explanations of the data (e.g., 3 AB1) are represented as causal graphs, where arrows represent causal

relationships. The causal graph where both cues cause the effect represents an explanation where Cues A and B

independently (and not conjunctively) cause the effect. The number below a causal graph represents the posterior

probability of the explanation given the data. Observe that the model distributes belief across multiple

explanations and that evidence indicating whether Cue A causes the effect influences the model’s predictions

about whether Cue B causes the effect.
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ation of conjunctive causes under the assumption that people only

posit conjunctive causes when the observations cannot be ex-

plained by simple causes alone (Novick & Cheng, 2004). None of

our experiments contain observations of this sort.

To represent a trial, we let the vector c denote the presence (ci 5

1) or absence (ci 5 0) of the cues and let e denote the presence

(e 5 1) or absence (e 5 0) of the effect. In order to specify the

probability of the effect as a function of its causes, we adopt the

noisy-or and noisy-and-not generating functions for generative and

preventive causation, respectively. These functions are derived

from the assumptions of causal power (Cheng, 1997). Let G be the

set of indexes such that li 5 1 (i.e., generative causes of e), and let

P be the set of indexes such that li 5 –1 (preventers of e). Using

the noisy-or and noisy-and-not functions, the probability of the

effect is

P(e 5 1|c, l, w) 5f1 2 p
g[G

(1 2 wg)
cgg p

p[P

(1 2 wp)
cp. (1)

Given data D that provides a frequency count N(e, c) for each

combination of the presence/absence of the effect and the cues and

the assumption that the trials are independent, the likelihood of the

data can be written as a function of the causal graph and its

weights:

P(D| w, l) 5 p
(e,c)

P(e|c, l, w)N(e,c). (2)

As shown in Equations 3–5, where n is the number of cues and

t is the number of possible values for a causal link (t 5 3 when

preventive causes are considered; t 5 2 otherwise), we assume

uninformative prior distributions on w and l:

P(w, l) 5 P(w|l)P(l)

P(l) 5 S1

t
Dn

P(w|l) , unif .

(3–5)

Although sparse and strong priors characterize people’s prior

beliefs better than uninformative priors (Lu, Yuille, et al., 2008),

the adoption of uninformative priors allows us to examine the

importance of belief distribution by comparing the Bayesian model

to associative models that do not incorporate prior beliefs about

causal strength. From Bayes’s theorem, the posterior distribution

of the links and weights can be calculated as

P(w, l|D) 5
1

Z
P(D|w, l)P(w|l)P(l). (6)

The variable Z represents a normalizing constant. Given this

joint probability distribution, we can answer questions about both

causal structure (i.e., whether a cue prevents, causes, or does not

influence the effect) and causal strength (i.e., how strongly the cue

causes or prevents the effect). For causal structure, the posterior

probability that a cue is a generative cause is the sum of the

posterior probabilities of the causal graphs where the cue is

generative. Accordingly, the posterior probability that cue i is

causal is

P(li 5 1|D) 5 o
l : li51

e P(w, l|D)dw. (7)

Note that Equation 7 marginalizes over the other causal links

and over the weights. Analogous calculations apply for the poste-

rior probabilities that cue i is preventive (li 5 –1) or noncausal

(li 5 0). To predict people’s answers to causal structure questions,

we use the mean value of li.

For causal strength questions, we define the mean causal

strength of cue i as

wili
#5 o

l
e wiliP(w, l|D)dw. (8)

The mean causal strength ranges from –1.0 for a deterministic

preventer to 1.0 for a deterministic generative cause.

Although the computations in these equations involve integra-

tion, the analytic integration of these equations is tractable for

small data sets—like those in the present article—with the assis-

tance of a computer algebra program.

This model explains the inferential dependencies in recovery

from overshadowing and backward blocking by how belief distri-

bution across the multiple explanations changes as disambiguating

evidence emerges. As shown in Figure 1, when provided with

ambiguous AB1 evidence, the model distributes belief across the

explanations where at least one of the cues causes the effect.

Subsequent evidence that Cue A does not cause the effect (A–

trials in recovery from overshadowing) therefore implies that Cue

B must. In contrast, subsequent evidence that Cue A causes the

effect (A1 trials in backward blocking) leaves Cue B as a poten-

tial, if less probable, cause of the effect. The Bayesian model

therefore predicts that people will be more certain about the causal

influence of Cue B in recovery from overshadowing than in

backward blocking.

Associative Models

In response to the failure of the R-W model (Rescorla &

Wagner, 1972) to account for inferential dependencies, three major

associative models have been developed: Van Hamme and Was-

serman’s (1994) learning rule, the comparator hypothesis (Dennis-

ton, Savastano, & Miller, 2001; Miller & Matzel, 1988; Stout &

Miller, 2007), and the modified sometimes-opponent-process

(SOP) model (Dickinson & Burke, 1996). All of these models

assume that the learner learns and utilizes within-compound asso-

ciations, but they differ in significant ways in implementing these

computational constraints, and therefore yield distinct predictions

for various paradigms. To illustrate the associative approach, we

review the R-W model and Van Hamme and Wasserman’s learn-

ing rule presently. The comparator hypothesis and the modified

SOP model are presented in Appendix A.

Rescorla-Wagner model. The R-W model (Rescorla & Wag-

ner, 1972) is the most well-known associative model. The R-W

model adopts the following learning rule, which modifies the

associations between a cue i and the effect e in order to reduce

prediction error:

DVi 5 sisesT 2 o
j

Vj)d. (9)

In this learning rule, si and se are learning rate parameters, where

si represents the salience of cue i when it is present (si 5 a) or

absent (si 5 0), se represents the salience of e when it is present

(se 5 b1) or absent (se 5 b2, where b2 is typically assumed to be
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a positive number less than b1). T represents the actual presence

(T 5 1) or absence (T 5 0) of e, and Vi represents the current

association between cue i and e. The summation, which occurs

over all cues present on a given trial, is the predicted strength of e.

The difference between T and the summation therefore represents

the prediction error (i.e., the observed value minus the expected

value), and the model modifies the association between the cue and

e so that the error will be smaller on the same trials in the future.

The R-W model accounts for many notable experimental find-

ings, including forward blocking (A1 AB1; e.g., Kamin, 1969).

Compared with a control condition without the initial A1 trials

(i.e., AB1 alone), forward blocking produces a weaker association

between cue B and e. The R-W model explains this finding,

because it learns a strong association between A and e during the

A1 trials. This stronger association leads to a smaller prediction

error on the AB1 trials, leaving less room to increase the associ-

ation between Cue B and e.

The explanation of inferential dependencies is more problem-

atic, however. Consider the predictions of the R-W model when

presented with recovery from overshadowing (AB1 A–) and

backward blocking (AB1 A1). Because the R-W model does not

modify the associations of absent cues (si 5 0 for absent cues), it

does not predict any learning about Cue B during the A1 or A–

trials.

As mentioned earlier, other associative models have been pro-

posed to explain the existence of inferential dependencies by

linking the presented and nonpresented cues through within-

compound associations. Van Hamme and Wasserman’s (1994)

learning rule is one such model.

Van Hamme and Wasserman’s learning rule. Van Hamme

and Wasserman (1994) modified the R-W model by positing (a)

within-compound associations between the cues that are presented

together and (b) a negative learning rate for absent but expected

cues, for which the expectation comes from the established within-

compound associations with a present cue. Van Hamme and Was-

serman did not specify a formal mechanism that controls the

formation of within-compound associations, but it is typically

assumed that within-compound associations form between cues

that are presented simultaneously. We adopt this assumption when

deriving the predictions of their learning rule. The learning rule

retains Equation 9 but assigns a negative learning rate to nonpre-

sented cues that are expected on the basis of a within-compound

association (i.e., expected but absent cues). More specifically, the

learning rate of the cue is set to different values depending on

whether the cue is present (si 5 a1), expected-but-absent (si 5 a2,

where a2 is negative), or unexpected-and-absent (si 5 0). Like the

R-W model, Van Hamme and Wasserman’s learning rule allows

the learning rate to vary as a function of the presence and absence

of e.

These modifications allow the learning rule to explain the ex-

istence of inferential dependencies in recovery from overshadow-

ing (AB1 A–) and backward blocking (AB1 A1). Figure 2

shows the asymptotic associations predicted by the model when

a2 5 –a1 and b1 5 b2. On the AB1 trials, the learning rule

infers—just as the R-W learning rule would—that e is explained

by both co-occurring cues. The within-compound association pos-

ited by the modified learning rule, however, provides the basis for

assigning Cue B a negative learning rate during subsequent A– or

A1 trials. As a consequence, Van Hamme and Wasserman’s

(1994) learning rule predicts that the Cue B–effect association will

decrease during the A1 trials of backward blocking and increase

during the A– trials of recovery from overshadowing.

The learning rule predicts that VB, the association between Cue

B and the effect, will be at least as close to 0.0 in backward

blocking as it will be close to 1.0 in recovery from overshadowing.

To see why, note that VB will only asymptotically approach 0.5 on

the AB1 trials and that A1 trials will lead to more learning than

A– trials, given the standard assumption that the occurrence of the

effect is more salient than its absence (i.e., b1 . b2). Thus, VB will

be closer to 0.0 in backward blocking than it is close to 1.0 in

recovery from overshadowing. For a binary effect, associative

strength can be viewed as the expected probability of the effect

given the cue. This expected probability should presumably de-

pend on both the reasoner’s certainty that the cue causes the effect

and the estimated causal strength of the cue assuming it causes the

effect. Associative models do not differentiate between certainty

and causal strength, however, so we treat associative strength as

the associative estimate of certainty. Therefore, the learning rule

predicts—in contrast to the Bayesian model—that people will be

more certain that Cue B does not cause the effect in backward

blocking than that the cue causes the effect in recovery from

overshadowing (because VB will be closer to zero in backward

blocking than close to one in recovery from overshadowing).

Additional Models

We primarily aim to contrast belief-distribution models with

associative models that adopt within-compound associations with

regard to their representations of ambiguous evidence. But these

models also make different assumptions about how causes com-

bine. Our belief-distribution model posits that causal strengths

Figure 2. The explanation of recovery from overshadowing and back-

ward blocking according to Van Hamme and Wasserman’s (1994) learning

rule. The arrows represent associations between the cues and the effect, and

the adjacent numbers represent the asymptotic associative strengths. The

dashed line represents a within-compound association between Cues A and

B. The within-compound association supports learning about the associa-

tion between Cue B and the effect on the A– and A1 trials, even though

Cue B is not present on those trials.
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combine according to noisy-logical functions (see Equation 1), and

the associative models posit that associations combine additively

(e.g., the summation in Equation 9).

To explore the independent contributions of these differences,

we consider two additional models: a linear Bayesian model with

an additive combination rule and an associative model with a

noisy-logical combination rule. Other researchers have considered

Bayesian models with additive combination rules, either in isola-

tion (e.g., Dayan & Kakade, 2001) or in comparison to noisy-

logical combination rules (Griffiths & Tenenbaum, 2005;

Kruschke, 2008). The linear Bayesian model that we develop,

similar to these models, is identical to the noisy-logical Bayesian

model presented earlier except that Equation 1 is replaced by the

following equation:

P(e 5 1|c, l, w) 5 o
g[G

(wg)
cg 2 o

p[P

(wp)
cp. (10)

Note that Equation 10 only produces a valid probability distri-

bution when the weights are constrained so that the function never

produces a value less than 0.0 or greater than 1.0. We constrain the

weights as needed to achieve this goal. For example, when Cues A

and B are presented together and assumed to be causal, we add a

constraint that wa 1 wb # 1.0. We refer to the model using

Equation 11 as the linear Bayesian model. The linear Bayesian

model is closely related to models of causal learning based on the

Kalman filter (e.g., Kruschke, 2008). We adopt the linear Bayesian

model rather than the Kalman filter because the Kalman filter

introduces additional assumptions that complicate the comparison

to the noisy-logical Bayesian model. Note, for example, that the

Kalman filter assumes that the power of a cause to produce its

effect gradually changes over time. When we refer to “the Bayes-

ian model” without qualification, we are referring to the belief-

distribution model that uses the noisy-logical combinations rules in

Equation 1.

The noisy-logical associative model, adapted from Danks, Grif-

fiths, and Tenenbaum (2003), is identical to Van Hamme and

Wasserman’s (1994) learning rule except that Equation 9 is re-

placed with the following equation, which reflects the noisy-

logical combination rule:

DVi 5 sisefT 2f1 2 p
g:Vg.0

(1 2 Vg)gf p
p:Vp,0

(1 2 |Vp|)gg
(11)

We assume that the products in this equation are only computed

over the cues that are present on a given trial. Equation 11

performs error-correction in the same way as Equation 9 but

derives predictions using the noisy-logical function rather than a

linear function.

Distinguishing Belief Distribution and

Within-Compound Associations

As illustrated earlier, belief-distribution models and associative

models augmented with within-compound associations make dif-

ferent predictions regarding recovery from overshadowing and

backward blocking. Experiments 1A and 1B tested some situations

where the models predict different inferential dependencies.

In other situations, the associative models predict inferential

dependencies, even though the belief-distribution model does not.

Because the associative models predict the formation of within-

compound associations whenever two cues are presented simulta-

neously, these models predict inferential dependencies even in the

absence of ambiguity about the causal influence of the target cue.

Consider a situation where the effect follows the presentation of

one cue (A1) as well as the presentation of that cue and another

cue (AB1). Now, suppose also that the effect is later observed to

follow the presentation of the other cue (B1). Because associative

models predict that the AB1 observations create a within-

compound association between the cues, they predict that subse-

quent learning about Cue B, even though the causal status of Cue

A is already known, might still influence inferences about Cue A.

For example, Van Hamme and Wasserman’s (1994) learning rule

predicts that the B1 trials will diminish the Cue A–effect associ-

ation substantially. Models that distribute belief across multiple

explanations make the more intuitive prediction that once there is

no uncertainty regarding the causal influence of a cue, beliefs

about the cue will remain unchanged so long as new information

does not contradict those beliefs. We tested these predictions in

Experiment 2.

Experiments 1A and 1B

The different models often make competing predictions about

the exact form of the inferential dependencies. For example, as

mentioned previously, the Bayesian model predicts that people

will be more certain that Cue B causes the effect in recovery from

overshadowing than certain that Cue B does not cause the effect in

backward blocking. Van Hamme and Wasserman’s (1994) learn-

ing rule predicts the opposite: that people will be less certain that

Cue B causes the effect in recovery from overshadowing than they

will be certain that Cue B does not cause the effect in backward

blocking. We tested these predictions in Experiment 1A.

For Experiment 1A, the Bayesian model, the modified SOP

model, and the comparator hypothesis make similar predictions.

We therefore consider some additional procedures in Experiment

1B. In particular, we investigate recovery from preventive over-

shadowing (A1 and ABC– trials followed by AB1 trials) and

preventive backward blocking (A1 trials and ABC– trials fol-

lowed by AB– trials). For both procedures, we were especially

interested in whether participants would make inferences about

Cue C during the AB trials. As becomes clear in the experimental

results, these preventive procedures are useful for discriminating

between the Bayesian and the other associative models.

Method

Participants. Thirty-two undergraduate students participated

in Experiment 1A, and another 32 undergraduate students partic-

ipated in Experiment 1B. All were from the University of Califor-

nia, Los Angeles and participated for course credit.

Materials and procedure. Participants were asked to diag-

nose the fruit allergies of the patients in a doctor’s office by

discovering the fruits that caused each patient’s allergic reactions.

The cover story explained that the diagnoses would be made by

reviewing “fruit journals.” Each fruit journal provided a daily log

of the fruits that a patient ate and the occurrence of his or her

allergic reactions. Participants in Experiment 1B also read that

“fruit allergies can be both caused and prevented” in that “some
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fruits may cause the allergic reaction and other fruits may prevent

it.”

Participants in each experiment viewed five fruit journals,

whose contents are summarized in Table 1. The journals were

presented in a randomized order. The same cue corresponded to

different fruits across fruit journals (i.e., Cue A was a different

fruit in different journals), and the assignment of the fruits to the

cues in the journals was randomized. Each fruit journal contained

multiple phases. The phases were presented sequentially, but the

order of the trials within a phase was randomized. Each phase

contained five trials of each trial type (e.g., there were five AB1

trials in the first phase of the recovery from overshadowing fruit

journal).

Each trial displayed the pictures and names of whichever fruits

the patient ate on that day. The fruits were displayed alone for 1.5

s, at which point a cartoon face appeared. The cartoon face

signified whether the patient had an allergic reaction on that day:

A smiley face with the text “ok” indicated that the patient did not

have a reaction and a frowning face with the text “allergic reac-

tion” indicated that the patient had a reaction. The trial ended after

the fruits and cartoon face were displayed together for 2.0 s.

After a fruit journal was presented, we assessed the causal

beliefs of the participants. In Experiment 1A, participants were

asked whether the fruit caused or did nothing to influence the

patient’s allergic reactions. In Experiment 1B, participants were

asked whether the fruit caused, prevented, or did nothing to influ-

ence the patient’s allergic reactions. These questions assess causal

structure (whether a causal relationship exists; Lu, Yuille, et al.,

2008).

Responses were recorded on sliding scales with five tick marks

in Experiment 1A and nine tick marks in Experiment 1B, with each

mark labeled to encourage participants to distinguish between

different degrees of a cue “maybe” causing an effect. In Experi-

ments 1A and 1B, respectively, the leftmost mark (labeled “defi-

nitely not a cause”) and middle mark (labeled “neither” cause nor

preventer) corresponded to cues that did not influence the effect.

The other marks corresponded to cues that were “possible (but not

likely),” “somewhat likely,” “probable,” and “definite” causes and

preventers. Responses were coded as integers ranging from 0 to 4

in Experiment 1A and –4 to 4 in Experiment 1B. Responses were

divided by the highest possible response (4) to produce a causal

rating with a maximum value of 1.0 (corresponding to a cue that

“definitely” causes the effect).

Results

Table 2 shows the causal ratings for each cue. We report

analyses of the causal ratings that provide the clearest tests of the

models only: those of Cue B in Experiment 1A and Cue C in

Experiment 1B. Figure 3 displays the causal ratings and model

predictions for these cues. Observe that the causal ratings in the

experimental and corresponding control conditions differed for

recovery from overshadowing, t(31) 5 3.47, p , .01; backward

blocking, t(31) 5 2.18, p , .05; recovery from preventive over-

shadowing, t(31) 5 3.74, p , .01; and preventive backward

blocking, t(31) 5 3.74, p , .01. These differences reflect the

existence of inferential dependencies. The causal ratings for the

target cues did not differ significantly across the control conditions

in either Experiment 1A, F(2, 62) 5 1.19, p 5 .31, or Experiment

1B, F(2, 62) 5 2.14, p 5 .13.

As expected, participants were more certain about the causal

influence of the target cue in the recovery from overshadowing

condition than in the backward blocking condition: Observe that

the mean causal rating for Cue B in recovery from overshadowing

(0.77) was much closer to 1.0 than the mean causal rating for Cue

B in backward blocking (0.48) was close to zero. The difference in

certainty was less pronounced between recovery from preventive

overshadowing (–0.75 causal rating for Cue C) and preventive

backward blocking (–0.29 causal rating for Cue C). To explore

these trends in greater detail and analyze their statistical signifi-

cance, we considered the proportion of participants who were

certain about the influence of the target cue in each condition. In

Experiment 1A, 15 out of 32 participants in the recovery from

overshadowing condition believed that Cue B was a “definite”

cause of the effect (i.e., provided a causal rating of 1.0), whereas

none of the participants in the backward blocking condition indi-

cated that Cue B was “definitely not a cause” (i.e., provided a

causal rating of 0.0), x2(1, N 5 15) 5 13.07, p , .001 (by

McNemar’s test). In Experiment 1B, 18 out of 32 participants in

the recovery from preventive overshadowing condition believed

that Cue C was a “definite” preventer (i.e., gave a rating of –1.0),

whereas only eight out of 32 participants in the preventive back-

ward blocking condition believed that Cue C was neither a cause

nor a preventer (i.e., gave a rating of 0.0), x2(1, N 5 18) 5 4.5,

p , .05 (by McNemar’s test).

Model predictions. The predictions of the associative models

are parameter-dependent, so we set the parameters of the associa-

tive models to maximize the fit to the experimental results. Ap-

pendix B describes the procedure used to select the model param-

eters.

The Bayesian model correctly predicts that while the target cue

in Experiment 1A was unambiguously causal in recovery from

overshadowing (li ' 1.0; see the leftmost bar of the Bayesian

model predictions in Figure 3), its causal influence was ambiguous

in backward blocking (li ' 0.5; see the second bar). The Bayesian

model also predicts the analogous findings for the preventive

variants of these paradigms (Experiment 1B). None of the other

models predict all four of these basic findings. The R-W model

Table 1

The Contents of the Fruit Journals Shown to Participants in

Experiments 1A and 1B

Fruit journal Phase 1 Phase 2 Phase 3

Experiment 1A
RO AB1 c1 d2 A2

BB AB1 c1 d2 A1

RO control AB1 c1 d2 d2

BB control AB1 c1 d2 c1

No-trial control AB1 c1 d2

Experiment 1B
pRO A1 B2 C2 d2 A1 ABC2 A1 AB1

pBB A1 B2 C2 d2 A1 ABC2 A1 AB2

pRO control A1 B2 C2 d2 A1 ABC2 A1 Ad1

pBB control A1 B2 C2 d2 A1 ABC2 A1 Ad2

No-trial control A1 B2 C2 d2 A1 ABC2 A1

Note. RO 5 recovery from overshadowing; BB 5 backward blocking;
pRO 5 recovery from preventive overshadowing; pBB 5 preventive
backward blocking. Filler cues are written in lowercase.
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simply fails to predict any retrospective revaluation. Van Hamme

and Wasserman’s (1994) rule erroneously predicts that the causal

rating for the target cue will be slightly closer to 0.5 in recovery

from overshadowing than in backward blocking. (The learning rule

also predicts that the target cue is always close to –0.5 in Exper-

iment 1B, although this prediction is parameter dependent.2) The

comparator hypothesis predicts the causal ratings in Experiment

1A but erroneously predicts that the causal rating for Cue C will be

nearly 0.0 (corresponding to a cue that is definitely not causal) in

the recovery from preventive overshadowing condition of Exper-

iment 1B (note the near-zero value of the leftmost bar for Exper-

iment 1B in Figure 3). The higher order comparison process

accounts for this erroneous prediction (for details, see Stout &

Miller, 2007). Finally, the modified SOP model barely predicts any

retrospective revaluation at all given its best fitting parameters.

Furthermore, even when the qualitative predictions of the modified

SOP are considered, it fails to predict the results (see Appendix A).

The noisy-logical associative model correctly predicts that re-

covery from overshadowing is less ambiguous than backward

blocking but erroneously predicts more negative causal ratings in

the preventive backward blocking condition than in the relevant

control condition. The predictions of the two Bayesian models are

similar, suggesting that the results are generally consistent with

both the noisy-logical and linear combination rules. Note, how-

ever, that the linear Bayesian model erroneously predicts that

people should be quite certain that the target cue is noncausal in

both generative and preventive backward blocking conditions.

Overall, the standard and linear Bayesian model produced the

highest rank-order correlations with the data (rs 5 .98, MSE 5

0.026 and rs 5 .98, MSE 5 0.019, respectively)—higher than that

of the R-W model (rs 5 .95, MSE 5 0.00118), Van Hamme and

Wasserman’s (1994) learning rule (rs 5 .97, MSE 5 0.0089), the

comparator hypothesis (rs 5 .91, MSE 5 0.064), the modified SOP

model (rs 5 .91, MSE 5 n/a), and the noisy-logical associative

model (rs 5 .96; MSE 5 0.010). Although the MSEs of some of

the associative models were lower than the MSE of the Bayesian

model, this is not surprising given that the comparison is between

the parameter-free Bayesian model and associative models with

free parameters that were selected to maximize the fit to the data.

Discussion

Why was the Bayesian model more successful in explaining the

inferential dependencies than the associative models? By the in-

corporation of deductive inference, the Bayesian model implicitly

encodes not only that an inferential dependency exists but also its

specific form. For example, if belief is distributed across those

explanations where at least one of the cues causes the effect, it

implies that (a) if one of the cues does not cause the effect, then the

other must and (b) if one of the cues causes the effect, then the

other might. Within-compound associations, on the other hand, do

not use deductive logic and therefore do not directly encode the

exact form of an inferential dependency. Instead, the form of

the inferential dependency depends on interactions between the

within-compound associations (which encode that an inferential

dependency exists) and other mechanisms (which control how the

inferential dependency is expressed). Experiments 1A and 1B

illustrate that these interactions predict the correct inferential de-

pendencies in some situations but not in others. Still, although

none of the associative models predict the observed results and

although belief distribution involves a more principled response to

ambiguous evidence, some modification of one of the associative

models might explain the results. We revisit this issue in the

General Discussion, preferring to discuss the other implications of

the results presently.

The belief-distribution approach implies that people will be able

to flexibly encode inferential dependencies with different forms.

For example, while AB1 trials in backward blocking usually lead

people to infer that at least one of the cues causes the effect, there

may be situations where AB1 evidence leads people to infer that

at most one of the cues causes the effect. Consider a field biologist

who identifies two new bird species on a remote island and

observes that something on the island is splitting coconuts apart

(AB1). Knowing that ecological niches are usually occupied by a

single species, the biologist may believe that at most one of the

bird species evolved to split coconuts. This belief distribution

creates an inferential dependency that differs from the one typi-

cally observed in backward blocking: After learning that one bird

species splits coconuts (A1), the biologist would be certain that

the other species does not split coconuts. Mitchell, Killedar, and

Lovibond (2005) manipulated whether participants’ prior beliefs

supported belief distributions like this one, and people produced

different inferential dependencies for the different belief distribu-

2 The learning rule predicts only small changes in belief during the final
phase in Experiment 1B because retrospective revaluation of Cue C on the
A and AB trials will proceed in opposite directions. For example, the
preventive backward blocking condition alternated A1 and AB– trials. On
the ABC– trials in the previous phase, the learning rule infers that Va ' 1.0,
Vb 5 Vc ' –0.5. As a consequence, the learning rule overpredicts the
absent effect on the AB– trials. This should lead the learning rule to
(among other things) decrease Va. The decrease in Va, however, would lead
it to underpredict the effect on subsequent A1 trials. The net result is that
Vc increases on AB– trials and decreases on A1 trials. The learning rule
predicts the observed results more closely if retrospective revaluation of
Cue C is assumed to occur on AB trials but not on A trials.

Table 2

Causal Ratings for Each Cue in Experiments 1A and 1B

Fruit journal

Cue

A B C

M SD M SD M SD

Experiment 1A
RO (AB1 A2) .10 .15 .77 .29
BB (AB1 A1) .90 .21 .48 .19
RO control (AB1 d2) .57 .17 .59 .14
BB control (AB1 c1) .56 .16 .55 .16
No-trial control (AB1) .59 .15 .58 .15

Experiment 1B
pRO (A1 ABC2 AB1) .94 .11 2.02 .14 2.75 .33
pBB (A1 ABC2 AB2) .94 .11 2.87 .23 2.29 .24
pRO control (A1 ABC2 Ad1) .88 .36 2.59 .23 2.56 .25
pBB control (A1 ABC2 Ad2) .93 .13 2.51 .22 2.48 .24
No-trial control (A1 ABC2) .94 .11 2.48 .27 2.51 .26

Note. RO 5 recovery from overshadowing; BB 5 backward blocking;
pRO 5 recovery from preventive overshadowing; pBB 5 preventive
backward blocking. Filler cues are written in lowercase. The mean causal
ratings for the critical cues (Cue B in Experiment 1A and Cue C in
Experiment 1B) are displayed in bold.
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tions. Additionally, the flexibility of the belief-distribution ap-

proach explains why different assumptions about how causes

combine can support different inferential dependencies (e.g.,

Beckers, De Houwer, Pineno, & Miller, 2005; Lu, Rojas, et al.,

2008). The associative models might explain these findings by

adjusting the model parameters (e.g., by adjusting the sign of a2 in

Van Hamme and Wasserman’s, 1994, learning rule) across the

different tasks, but the rationale for these parameter adjustments is

unclear.

It may be surprising that our experiment found evidence for

backward blocking (and its preventive variant), given that recovery

from overshadowing is often observed in situations where back-

ward blocking is not (Corlett et al., 2004; Larkin et al., 1998; see

also Beckers, De Houwer, Pineno, & Miller, 2005; Lovibond,

Been, Mitchell, Bouton, & Frohardt, 2003; Vandorpe & De Hou-

wer, 2005). How are we to reconcile our finding (and similar

findings such as Wasserman & Berglan, 1998; Wasserman &

Castro, 2005) with these other findings? The Bayesian model

offers one possible explanation. Although the Bayesian model

predicts backward blocking, it also predicts that target cue will

remain ambiguous in backward blocking: note that while the

model predicts that P(B ¡ E) is lower after backward blocking

than after the initial evidence (see Figure 1), P(B ¡ E) does not

approach 1.0 or 0.0 in either situation. To the extent that people fail

to distinguish between different degrees of the target cue “maybe”

causing the effect, we would expect them to provide the same

causal ratings for the target cue in backward blocking as they

provide in relevant control conditions (e.g., AB1). In short, some

experimental measures of causal beliefs may not be sensitive

enough to detect all of the changes in the participants’ beliefs.

Indeed, experiments demonstrating backward blocking have some-

times used more sensitive measures than experiments that failed to

demonstrate backward blocking. For example, Wasserman and

Berglan (1998) labeled the causal rating scale so that some of its

tick marks corresponded to cues that “definitely would not,”

“probably would not,” “possibly,” “probably would,” or “defi-

Figure 3. Causal ratings and model predictions for Cue B in Experiment 1A (B in Exp1A) and Cue C in

Experiment 1B (C in Exp1B) as a function of experimental condition. Error bars indicate standard errors. R-W 5

Rescorla and Wagner (1972) model; VHW 5 Van Hamme and Wasserman’s (1994) learning rule; mSOP 5

modified sometimes-opponent-process model; RO 5 recovery from overshadowing; BB 5 backward blocking;

pRO 5 recovery from preventive overshadowing; pBB 5 preventive backward blocking; NLA 5 noisy-logical

associative model.
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nitely would” cause the effect. Our experiment also used a detailed

rating scale. The experiments that did not show backward blocking

have used less detailed rating scales, labeling only the tick marks

corresponding to a cue that “definitely would not,” “possibly,” or

“definitely would” cause the effect (e.g., Larkin et al., 1998;

Lovibond et al., 2003). Furthermore, when we replicated Experi-

ment 1B with a less detailed rating scale, there was no evidence of

preventive backward blocking (Carroll, Cheng, & Lu, 2010). Of

course, the specificity of the rating scale is not the only factor that

will influence whether backward blocking is observed (e.g., see

Beckers et al., 2005; De Houwer, Beckers, & Glautier, 2002;

Lovibond et al., 2003; Miller & Matute, 1996).

Experiment 2

In Experiment 2, we investigated whether inferential dependen-

cies form between any cues that are presented simultaneously, as

the associative models predict. Table 3 shows the experimental

design. The two-cause condition combines forward and backward

blocking. The one-cause condition combines latent inhibition and

backward blocking. The associative models predict that within-

compound associations will form between Cues A and B during

the AB1 trials in the two-cause condition and between Cues C and

D during the CD1 trials in the one-cause condition. This leads to

the anomalous prediction that causal beliefs about Cues A and C

may be subject to revision as the participant learns about Cues B

and D.

Moreover, all four associative models predict that in the one-

cause condition the Cue C–effect association will increase during

the second learning phase. To see why, consider the predictions of

the R-W model. The R-W model predicts that Cue C–effect and

Cue D–effect associations will be zero prior to the CD1 trials, so

the R-W model will have a large prediction error on CD1 trials.

In response to this prediction error, the model will increase the Cue

C–effect and Cue D–effect associations. The other associative

models predict increases in the Cue C–effect association for sim-

ilar reasons. Belief-distribution models, in contrast, make a more

intuitive prediction that Cue C will still be viewed as noncausal

following the CD1 trials. Admittedly, variants of these associative

models, by introducing a competitive context or by proposing a

mechanism that reduces attention to familiar cues, predict the

stability of the Cue C–effect associations. We argue in the Dis-

cussion section, however, that these modifications will ultimately

prove unsatisfactory.

The competition control condition, which makes use of the

recovery from overshadowing procedure, serves to confirm that

our experimental procedure allows within-compound associations

to form. We expected that an inferential dependency would form

between Cues E and F on the EF1 trials and that the dependency

would be revealed after the subsequent F– trials. (If the procedure

does not lead to an inferential dependency, then the associative

models could explain stable causal ratings for Cues A and C by

setting the parameters to eliminate inferential dependencies; e.g.,

by setting a2 5 .0 for Van Hamme and Wasserman’s, 1994,

learning rule.)

Our experimental method recalls a series of experiments where

Shanks and colleagues (Shanks, Charles, Darby, & Azmi, 1998;

Shanks, Darby, & Charles, 1998) demonstrated that people’s

causal beliefs remain stable in certain situations where associative

models predict otherwise. Shanks and colleagues explained their

experimental findings by appealing to configural processing: pro-

cessing where configurations of stimuli are represented as undi-

vided entities. In configural models (e.g., Pearce, 1987, 1994), the

stimulus composed of Cues X and Y together (XY) is represented

independently of the stimuli composed of Cue X alone (X) and

Cue Y alone (Y), and learning about the XY configuration can

exert an influence on the predicted outcome separately from its

constituent elements. Because outcome prediction is dependent on

generalization due to similarity among stimuli (e.g., Stimuli XY

and X both have Cue X in common), one might think that con-

figural models can explain inferential dependencies without the

instability of the models positing within-compound associations.

However, the generalization in configural models cannot explain

backward blocking or recovery from overshadowing. For example,

although X1 trials following XY1 trials would increase respond-

ing to the XY stimulus, they would not influence the strength of

responding to the Y stimulus (e.g., Pearce, 1987, 1994). The

reasons for this are that (a) because Stimuli X and Y are dissimilar,

there is no direct generalization from X to Y and (b) because

configural models (e.g., Pearce, 1987, 1994) typically assume that

the X1 trials alter responding to the XY stimulus without altering

the XY–effect association per se, there is no indirect generaliza-

tion. (Even if the models supported direct or indirect generalization

between X and Y, the generalization would be in the same rather

than the opposite direction as the “competing” cue, and the model

would erroneously predict that responding to Cue Y would in-

crease following the X1 trials.) Moreover, in our experiments,

unlike Shanks et al.’s, because the individual cues can already

explain the data, there is no motivation for configural cues.

Method

Participants. Eleven undergraduate students at the University

of California, Los Angeles participated for course credit.

Materials and procedure. Except where noted, the materials

and procedure were identical to those in the previous experiments.

Participants viewed the fruit journals shown in Table 3, and there

were four trials of each trial type.

To measure how causal beliefs changed over the course of the

experiment, we assessed the causal beliefs of the participants after

each phase in each fruit journal. For each fruit presented in the fruit

journal up to that point, participants were asked whether the patient

would have an allergic reaction on a day when he or she ate the

fruit (a causal strength question, Lu, Yuille, et al., 2008). Re-

sponses were made on a sliding scale with seven tick marks, with

the leftmost mark labeled “definitely not,” the middle mark labeled

“maybe,” and rightmost mark labeled “definitely.” No other tick

marks were labeled. Responses were coded as integers ranging

Table 3

Experimental Design of Experiment 2

Condition Phase 1 Phase 2 Phase 3

Two causes A1 w2 AB1 B1

One cause C2 x1 CD1 D1

Competition control y1 z2 EF1 F2

Note. Lowercase letters represent filler cues.
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from 0 (definitely not) to 6 (definitely) and then divided by the

highest possible response (6) to produce a causal rating that ranged

from 0.0 to 1.0.

Results

Table 4 lists the causal ratings given by the participants, and

Figure 4 shows the causal ratings and model predictions for the

cues that are most relevant for differentiating between the models.

Observe that the causal ratings for Cues A and C were very stable

over the course of the experiment. In fact, each participant gave

identical causal ratings for these cues in the second and third

learning phases. By comparison, the causal rating for Cue E clearly

changed after participants learned that Cue F did not cause the

effect (F–). Moreover, contrary to the predictions of the associative

models, none of the participants gave a higher causal rating for

Cue C in the second learning phase than in the first learning

phase. Statistical tests confirmed that the causal ratings for Cue

E changed across the phases, t(10) 5 5.04, p , .001, and that

the causal ratings for Cues A and C were not significantly

different across the three phases. Every participant gave the

same causal rating for Cue A in each phase; only a few

participants gave Cue C a different rating across any of the

phases, and the mean differences in the causal ratings for Cue

C between Phases 1 and 2 were small, in the opposite direction

as predicted by all of the associative models, and nonsignifi-

cant, F(2, 20) 5 1.00, p 5 .39.3

Model predictions. The relative stabilities of the causal rat-

ings for Cues A, C, and E were only predicted by the Bayesian

model. Consistent with our findings in Experiments 1A and 1B,

the success of the Bayesian model depended on both its ability to

distribute belief across multiple explanations and on its assump-

tions about how causes combine, as revealed by the better fit of

the Bayesian model compared to the noisy-logical associative

model (which predicts substantial instability for the causal

ratings for Cues A and C) and the linear Bayesian model (which

predicts substantial instability for the causal ratings for Cue A).

We defer a discussion about why the linear Bayesian model

predicts changes in the causal ratings for Cue A until the

Discussion section.

The R-W model cannot explain why the causal ratings for Cue

E changed. None of the other associative models can explain why

the causal ratings for Cues A and C remain stable. (As before, we

selected the parameters of the associative models to maximize

their fit to the results. See Appendix B.) First, all the associative

models erroneously predict that the causal ratings for Cue C will

increase substantially during the second learning phase. In addi-

tion, Van Hamme and Wasserman’s (1994) learning rule errone-

ously predicts that people become much less certain that Cues A

and C cause the effect after the third learning phase. In fact,

because the prediction errors of the learning rule will be much

larger on the B1 trials than the F– trials (given that A1 trials

precede the AB1 trials, VB ' 0.0 after the AB1 trials; on the other

hand, following the EF1 trials, VF ' 0.5), the learning rule

predicts that the causal ratings for Cue A will change more than

the causal ratings for Cue E. The comparator hypothesis and the

modified SOP model also erroneously predict that within-

compound associations formed during Phase 1 will lead to con-

siderable instability in the causal ratings for Cues A and C in

subsequent phases. These predictions are discussed in greater

detail in Appendix A.

The Bayesian model based on belief distribution clearly showed

better fit with human performance than all other models. Besides

explaining the qualitative pattern of results well, it provided a

better overall fit (rs 5 .91; MSE 5 0.0074) to the data than the

R-W model (rs 5 .78; MSE 5 0.067), Van Hamme and Wasser-

man’s (1994) learning rule (rs 5 .80; MSE 5 0.060), the compar-

ator hypothesis (rs 5 .74; MSE 5 0.058), the modified SOP model

(rs 5 .80; MSE 5 n/a), the linear Bayesian model (rs 5 .87;

MSE 5 0.043), and the noisy-logical associative model (rs 5 .76;

MSE 5 0.062).

Discussion

Contrary to the predictions of the associative models, some

simultaneous presentations of multiple cues simply do not cre-

ate inferential dependencies between those cues. Instead, as

predicted by the Bayesian model, inferential dependencies typ-

ically do not form between cues with unambiguous causal

influences (e.g., Cues A and C). Furthermore, given that par-

ticipants learned an inferential dependency between Cues E and

F, the results cannot be explained by configural processing

(e.g., Shanks, Charles, et al., 1998; Shanks, Darby, & Charles,

1998) or by the impairment of the processes that form and

utilize within-compound associations.

The specific associative models considered here cannot ex-

plain the stability of causal estimates regarding Cue C in the

second learning phase. However, some associative accounts—

including the comparator hypothesis when given a representa-

tion of the context— explain latent inhibition (Lubow & Moore,

1959), where X1 trials produce a weaker cue– effect associa-

tion when they are preceded by X– trials. Might some associa-

tive accounts therefore explain the present results? There are

reasons to believe otherwise. Some of the associative models

3 Because there was a missing data cell (Cue E in the first phase), we did
not perform a statistical test on the Cue 3 Phase interaction across the three
phases. A quick glance at the results, however, should confirm that the
interaction exists. Furthermore, an ANOVA performed on the causal
ratings for Cues A, C, and E in the second and third phases revealed a
significant Cue 3 Phase interaction, F(2, 20) 5 25.4, p , .001.

Table 4

Causal Ratings for Each Cue in Experiment 2

Cue

Causal rating

Phase 1 Phase 2 Phase 3

M SD M SD M SD

A .97 .07 .97 .07 .97 .07
B — .50 .00 .94 .15
C .15 .28 .06 .15 .06 .15
D — .94 .15 .94 .15
E — .52 .05 .86 .23
F — .52 .05 .12 .30

Note. The causal ratings for the critical cues are displayed in bold. A dash
indicates that participants did not provide causal ratings for the given cue
in the given phase. (Participants were not asked to provide causal ratings
for yet-to-be-encountered cues.)
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explain latent inhibition by positing that the context is estab-

lished as a competitor of Cue X during the X– trials. While a

competitive context might retard the increase in the causal

ratings for Cue C, it cannot easily explain the complete absence

of such an increase (in fact, none of the participants gave higher

causal ratings for Cue C in the second learning phase). More-

over, we note that the comparator hypothesis predicts that the

context would be a weaker competitor in the present experi-

mental procedure than in latent inhibition (for reasons having to

do with the higher order comparison process; for details, see

Blaisdell, Bristol, Gunther, & Miller, 1998). Other associative

models explain latent inhibition by positing that people pay less

attention to familiar cues (e.g., McLaren & Mackintosh, 2000;

Pearce & Hall, 1980). While a mechanism that dramatically

reduces attention to familiar cues would allow an associative

model to explain the stability of the causal ratings for Cue C, it

would also incorrectly predict that the causal ratings for Cue E

(a cue that would be familiar after the EF1 trials) would remain

unchanged during the F– trials.

While we have argued that configural processing cannot explain

our experimental results, configural processing or conjunctive

causation may be important in other situations. The data from

Experiment 2 can be explained by “simple” causes combining in

accordance with the noisy-logical combination rules, but causes

are not always simple (e.g., Novick & Cheng, 2004; Shanks,

Charles, et al., 1998; Shanks, Darby, & Charles, 1998). In situa-

tions where simple causes cannot explain the data, people would

be more likely to invoke conjunctive causes or to rely on config-

ural processing.

Readers may be surprised that, despite our suggestion that

belief-distribution accounts do not predict inferential dependen-

cies between cues with unambiguous causal influences unless

the new observations contradict past beliefs, the linear Bayesian

model predicts that the causal ratings for Cue A will change

during the final learning phase. Our suggestion holds, because

for the linear Bayesian model, the new observations do contra-

dict past beliefs. To see why, consider the predictions of the

linear Bayesian model regarding Cues A and B (Kruschke,

Figure 4. Causal ratings and model predictions for selected cues in Experiment 2. Note that only the

Bayesian model predicts the relative stabilities of the causal ratings for the cues. Error bars correspond to

standard errors. R-W 5 Rescorla and Wagner (1972) model; VHW 5 Van Hamme and Wasserman’s (1994)

learning rule; mSOP 5 modified sometimes-opponent-process model; NLA 5 noisy-logical associative

model.
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2008, offered a similar explanation in the context of deriving

predictions for the Kalman filter). From the A1 and AB1

trials, the model infers that wa ' 1.0, wa 1 wb ' 1.0, and

wb ' 0.0. The subsequent B1 trials add an additional constraint

that wb ' 1.0, but this constraint directly contradicts the pre-

vious constraint that wb ' 0.0. Given these incompatible con-

straints, the linear Bayesian model selects intermediate values

of wa and wb, thereby predicting smaller causal ratings for Cue

A following the B1 trials.

General Discussion

The belief-distribution and associative approaches have pro-

foundly different implications for our conception of human causal

representations. Under the associative approach, the reasoner is

assumed to learn within-compound associations and maintain a

single hypothesis about the causes of the effect. In contrast, the

belief-distribution approach postulates that humans construct and

maintain multiple hypotheses, coding the uncertainty associated

with each. The latter approach, when instantiated with noisy-

logical generating functions, implies that humans will exhibit

greater flexibility and logical consistency in the use of new infor-

mation to update their beliefs about multiple alternative possible

explanations of the data. Our results show that belief-distribution

accounts offer principled and parsimonious explanations for infer-

ential dependencies and provide a better account of people’s

inferences than associative models. The associative models that we

considered failed to explain the form of inferential dependencies

(Experiments 1A and 1B) and predicted inferential dependencies

in situations where they were not observed (Experiment 2). Their

failure indicates that current associative models, which conflate all

of the possible explanations of the evidence into a single network

state, cannot capture the logical consistency and flexibility of

human causal inference.

Because we only examined the predictions of two variants of a

single belief-distribution model (the noisy-logical and linear

Bayesian models) and four associative models, one might question

the generality of our conclusions regarding belief distribution.

While some caution is warranted, there are strong reasons to

believe that our conclusions generalize beyond these specific mod-

els. First, there are belief-distribution models that explain inferen-

tial dependencies without invoking probability (e.g., propositional

models of causal inference; De Houwer et al., 2005; Lovibond,

2003; Mitchell, De Houwer, & Lovibond, 2009). Propositional

models have been applied to explain backward blocking and

recovery from overshadowing, and they would explain our exper-

imental results as well. There are reasons to believe that probabi-

listic models may provide a more robust account of everyday

causal reasoning than propositional models (Oaksford & Chater,

2007), but propositional and probabilistic models make the same

predictions in many circumstances, and our Bayesian model can be

regarded as a rational quantitative extension of propositional mod-

els.

Second, there is a general case to be made for the inadequacy of

within-compound associations. We know of no associative model

that explains our experimental results, and there is no obvious

modification that would allow within-compound associations to

explain the results. For example, Experiment 2 demonstrated that

within-compound associations can be problematic when they form

between cues with known causal influences. Yet by what means

could an associative model prevent this? Without belief distribu-

tion and a representation of ambiguity, associative models cannot

track whether a cue’s influence is known. Although other features

of the cue may be highly correlated with knowledge of a cue’s

influence, these correlations are imperfect. For example, although

familiarity and certainty are highly correlated (familiar cues tend

to have known causal influences), familiar cues can be constantly

confounded and have unknown causal influences.

Although we have stressed the consequences of failing to dis-

tribute belief across multiple explanations, causal models differ on

many other dimensions. On some of these other dimensions,

associative models offer better accounts of the experimental results

than our Bayesian model (for one review, see Perales & Shanks,

2007). For instance, while associative models offer detailed expla-

nations for the influence of trial order, surprise (e.g., Pearce &

Hall, 1980), and cue salience, our Bayesian model cannot explain

why any of these factors influence people’s inferences. Addition-

ally, there may be other experimental procedures that encourage

associative processing to a greater extent than ours. Our experi-

ments presented no more than a few cues to the participant at any

given point and did not provide trial-by-trial feedback; associative

processing may be more prominent in other circumstances.

Clearly, to offer a complete explanation of causal reasoning, our

Bayesian model would require extension.

Because Bayesian models can be viewed in some respects as

extensions of associative models (Kruschke, 2008), other Bayesian

models may be able to offer a more complete account of causal

inference by incorporating the many insights produced by work on

associative models. Indeed, other Bayesian models of causal learn-

ing are sensitive to trial order (e.g., Daw et al., 2008; Kruschke,

2006; Lu, Rojas, et al., 2008) and the unexpectedness of observa-

tions (Courville, Daw, & Touretzky, 2006). For example, it should

be possible to extend the present model using the framework of

sequential Bayesian inference to account for some aspects of

dynamic causal learning (e.g., Lu, Rojas, et al., 2008).

Given that causal models differ on many dimensions, direct

comparisons between the models is not always as informative as

one would hope. We believe that a more promising research

strategy involves identifying the dimensions of variation across

models of causal inference and testing the role of these differences

in causal inference. Associative models typically explain learning

on a trial-by-trial basis by appealing to error correction, assume

that associations are represented as punctate values, and assume

that the strength of the effect is an additive function of the

associative strengths of its causes. Bayesian models typically

make inferences from summarized data, distribute belief across

multiple parameter-values and explanations, and assume a mech-

anism that can incorporate prior beliefs. Propositional models

distribute belief across multiple causal structures but do not dis-

tribute belief across multiple parameter values. Ideally, research

should aim to determine whether causal learning is propositional

or probabilistic, whether it requires belief distribution, whether it is

penetrable to language and instruction, whether it requires a priori

causal assumptions, and so on.

The present experiments contribute to this endeavor by illus-

trating the importance of representing ambiguity by distributing

belief across multiple explanations. Given the prevalence of am-

biguous evidence in everyday causal reasoning, a representation of
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ambiguity will prove useful when reasoning about causal evidence.

This is something that the noisy-logical Bayesian models of causal

inference clearly have but that associative models and within-

compound associations fail to approximate. Belief distribution—

whether done through probabilistic inference, propositional rea-

soning, or otherwise—plays an important role in explaining how

people reason about inferential dependencies and ambiguous evi-

dence.
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Appendix A

The Comparator Hypothesis and the Modified SOP Model

In this appendix, we describe the comparator hypothesis and the

modified sometimes-opponent-process (SOP) model. We then dis-

cuss the predictions of the models in the experiments.

The Comparator Hypothesis

The comparator hypothesis (Denniston et al., 2001; Miller &

Matzel, 1988; Stout & Miller, 2007) uses response strengths, as

opposed to the typical cue–effect associations, to predict the

effect. According to the comparator hypothesis, the response

strength of a cue (the extent to which it leads to the expectation of

the effect) is computed by comparing its direct and indirect acti-

vation of the effect. The cue’s direct activation of the effect is the

association between the cue and the effect, and the indirect acti-

vation of the effect is the product of the associations along an

indirect path to the effect that traverses a within-compound asso-

ciation. A cue is viewed as causal to the extent that its direct

activation of the effect exceeds its indirect activation of the effect.

Although the comparator hypothesis also posits a more compli-

cated higher order comparison process, this process rarely influ-

ences the predictions of the model in the present article. We note

its influence when it is relevant. Interested readers can find the

details of the higher order comparison process in Stout and Miller

(2007).

The comparator hypothesis updates associations using a modi-

fication of the R-W learning rule (Stout & Miller, 2007):

DVi,j 5 sisj(T 2 Vi,j). (A1)

There are two important differences between Equation A1 and

the R-W learning rule (Equation 9). First, the updated equation is

applied to learn within-compound associations in addition to cue–

effect associations: Vi,j represents the association from cue i to the

variable indexed by j. Depending on whether the variable indexed

by j is a cue or the an effect, Vi,j represents the strength of either

a within-compound association or a cue–effect association. Sec-

ond, Equation 10 calculates the prediction error relative to the

prediction of a single association Vi,j, rather than relative to a sum

of the associations of the present cues. The consequences of this

modification can be seen by considering the AB1 trials. During

these trials, the standard R-W rule predicts that the cue–effect

associations will approach 0.5 (see Figure 2), but the comparator

hypothesis predicts that the cue–effect associations will approach

1.0 (see Figure A1).

As is typical for an associative model, the salience of a cue

depends on whether it is present or absent. We assume that the

salience of cue i depends on whether the cue is present (si 5 a) or

absent (si 5 0.0), and the salience of cue j (which could be the

effect) also depends on whether the cue is present (sj 5 a) or

absent (sj 5 k1). The strength of the competition from the indirect

activation of the effect is controlled by the parameter k2. There is

a final parameter k3 that influences the extent to which a cue that

has never been paired with the effect competes with other cues. In

all of our simulations of the comparator hypothesis, we assume

that context is ignored.

(Appendices continue)

Figure A1. The asymptotic associations as predicted by the comparator

hypothesis in response to recovery from overshadowing and backward

blocking. The response to Cue B is calculated by comparing its direct

activation of the effect (the association between Cue B and the effect) to its

indirect activation of the effect (the association from Cue B to Cue A

multiplied by the association from Cue A to the effect).
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Figure A1 shows the predicted asymptotic associations in re-

covery from overshadowing (AB1 A–) and backward blocking

(AB1 A1) according to the comparator hypothesis. After the

AB1 trials, the comparator hypothesis predicts that there will be

limited responding to Cue B alone, because Cue B will activate the

effect both directly and indirectly. On subsequent A– trials in

recovery from overshadowing, responding to Cue B will approach

1.0 as the diminishing Cue A–effect association reduces the indi-

rect activation of the effect. In contrast, given that the Cue

A–effect association should already be near ceiling following the

AB1 trials, subsequent A1 trials in backward blocking would

have a limited influence on responding to Cue B. The comparator

hypothesis predicts that responding to Cue B in backward blocking

will continue to be limited but nonzero: Cue B will continue to

activate the effect both directly and indirectly. Thus, like the

Bayesian model, the comparator hypothesis predicts that people

will be more certain about the causal influence of Cue B following

recovery from overshadowing than following backward blocking.

Modified SOP Model

The modified SOP model (Dickinson & Burke, 1996) extends

the SOP model (Wagner, 1981) to account for retrospective reval-

uations. The model represents each cue by a collection of ele-

ments. Because the model does not distinguish between cues and

effects, the effect is also represented by a collection of elements.

At any given time, an individual element will be in one of three

states: the observed state, the expected state, or the inactive state.

When a cue has not been observed recently and is not expected on

the basis of a within-compound association, all of its elements will

be in the inactive state. However, when a cue has been observed or

is expected, some of its elements will be in these other states.

Observing a cue causes some of its elements to move into the

observed state, and the expectation of a cue (which is established

through within-compound associations) causes some of its ele-

ments to move into the expected state. If a cue is both observed and

expected, then we might find 40% of its elements in the observed

state, 40% in the expected state, and 20% in the inactive state.

Elements in the observed state eventually decay into the expected

state and elements in expected state eventually decay into the

inactive state. Thus, elements of an observed cue decay to the

“expected” state even when the cue is not expected. For this

reason, the observed and expected states are typically referred to

more generally as the A1 and A2 states. However, the A1-to-A2

decay is often ignored when deriving the qualitative predictions of

the model, so we adopt the more descriptive observed and ex-

pected terms.

In the modified SOP model, excitatory learning occurs between

two cues to the extent that they are both in the observed state or

both in the expected state. Inhibitory learning occurs between two

cues to the extent that one is in the observed state, and the other is

in the expected state. No learning occurs otherwise. For example,

if a cue and the effect were presented together and no associations

had been formed yet, some elements of the cue and some elements

of the effect would both move into the observed state. This would

lead to excitatory learning between the cue and the effect.

The upper half of Table A1 shows how the modified SOP

explains recovery from overshadowing (AB1 A–) and backward

blocking (AB1 A1). On AB1 trials, the modified SOP model

learns that each cue is associated with the effect and that there is

a within-compound association between Cues A and B. On sub-

sequent A– or A1 trials, Cue B will be expected because of its

within-compound association with Cue A. Hence, many elements

of Cue B will be in the expected state. In recovery from overshad-

owing, the effect will be expected on the basis of its association

with Cue A, so its elements will also enter the expected state. Since

both the effect and Cue B will be in the expected state, the model

predicts that people will become increasingly convinced that Cue

B is a cause of the effect. However, for backward blocking,

because the effect is observed and expected on the basis of its

association with Cue A, its elements will enter both the observed

and expected states. Because Cue B and the effect will be partly in

the same state and partly in different states, this will induce

conflicted (i.e., excitatory and inhibitory) learning. Thus, the mod-

ified SOP model predicts that Cue B should undergo strong learn-

ing on A– trials of recovery from overshadowing (i.e., people

should become certain that Cue B causes the effect) and limited

learning on the A1 trials of backward blocking (i.e., people should

remain uncertain about the causal influence of Cue B).

Although the predictions of the modified SOP model are usually

derived qualitatively, we consider a quantitative model to facilitate

comparisons with the other models. When deriving the quantitative

predictions of the model, we employ Aitken and Dickinson’s

(2005) implementation. Following Aitken and Dickinson (2005),

we consider the parameters PI¡A1 (the salience of an observed

cue), l (the overall learning rate), r (the ratio of the observed- and

expected-state learning rates), Ns (the number of elements per

stimulus), and Nd (the rate of decay for elements in State A1).

(Appendices continue)
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Experiments 1A and 1B

Figure 3 shows that the modified SOP model and the compar-

ator hypothesis fail to explain the results in Experiments 1A and

1B. The predictions of the comparator hypothesis are discussed in

the main text. We therefore focus on the predictions of the mod-

ified SOP model here.

Under the standard assumption that excitatory learning and

inhibitory learning approximately counteract each other, the

modified SOP model cannot explain the results of Experiment

1B. To see why, note that the modified SOP model predicts that

learning regarding Cue C will be conflicted in recovery from

preventive overshadowing but unambiguous in preventive back-

ward blocking (see the bottom half of Table A1). This supports

the erroneous prediction that the causal influence of Cue C will

remain ambiguous in recovery from preventive overshadowing

while potentially becoming unambiguous in preventive back-

ward blocking.

Furthermore, the modified SOP model never—even with non-

standard assumptions—predicts the observed result that partici-

pants were more certain in both generative and preventive recov-

ery from overshadowing than in generative and preventive

backward blocking. As Table A1 makes clear, the modified SOP

model predicts that recovery from overshadowing is more similar

to preventive backward blocking than to preventive recovery from

overshadowing. Depending on the assumptions that one makes

about the relative strengths of excitatory and inhibitory learning,

the modified SOP might explain either—but not both—the pattern

of inference in Experiment 1A or the pattern of inference in

Experiment 1B.

Experiment 2

As Figure 4 shows, both the comparator hypothesis and the

modified SOP model predict substantial instability in the causal

ratings for Cue A. According to the comparator hypothesis, the

AB1 trials immediately establish Cue B as strong competitor for

Cue A. The comparator hypothesis only predicts stable causal

ratings in the second learning phase when the increase in the Cue

A–effect association counteracts the increased competition from

Cue B. Even when the parameters are set so, however, the B1

trials in Phase 3 will cause Cue B to become a still-stronger

competitor, thereby predicting a later decrease in the causal ratings

for Cue A.

The modified SOP predicts conflicted learning (i.e., both excit-

atory and inhibitory) whenever the effect is both expected and

observed. In principle, this would allow the modified SOP to

explain the stability of Cue A throughout the entire experiment and

to account for the stability of Cue C during the third learning

phase. In practice, however, excitatory and inhibitory learning will

rarely offset each other perfectly. As Figure 4 shows, Aitken and

Dickinson’s (2005) implementation of the modified SOP predicts

substantial changes in the causal ratings for Cues A and C.

(Appendices continue)

Table A1

Selected Predictions of the Modified Sometimes-Opponent-

Process Model for Generative and Preventive Variants of

Recovery from Overshadowing and Backward Blocking

Condition

Activation states
Target-effect

learningTarget cue Effect

Generative variants
RO (AB1 A2) E E 1
BB (AB1 A1) E O 1 E 12
Control (AB1) I I none

Preventive variants
pRO (A1 ABC2 AB1) E O 1 E 12
pBB (A1 ABC2 AB2) E E 1
Control (A1 AB2) I I none

Note. RO 5 recovery from overshadowing; BB 5 backward blocking;
pRO 5 recovery from (preventive) overshadowing; pBB 5 (preventive)
backward blocking; E 5 expected state; O 5 observed state; I 5 inactive
state; 1 5 excitatory learning, which in isolation would increase the
associative strength; 2 5 inhibitory learning, which in isolation would
decrease the associative strength. Learning is shown for trials that are
displayed in boldface. The target cue is Cue B in the upper half of the table
and Cue C in the lower half of the table.
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Appendix B

Model Fitting

The predictions of the associative models are parameter depen-

dent. Whenever we derived the predictions of an associative

model, we selected its parameters to provide the best fit to the

experimental results. For the associative models other than the

modified SOP model, we selected the parameter values by using

the Nelder-Mead method, a gradient-descent procedure, to mini-

mize the mean squared error of the predictions. To reduce the

chances of identifying a local minimum, we performed this fitting

procedure many times, with randomized initial parameters on each

run. The fitting procedure was repeated at least 20 times for each

fit, and the procedure consistently converged to one of a few local

minima on each run.

Because the modified SOP model involves stochastic processes,

its predictions vary slightly from run to run. This simulation noise

limits the effectiveness of the gradient-descent procedures such as

the Nelder-Mead method that propose small steps in the parameter

space. We therefore fit the parameters of the modified SOP model

with a different gradient-descent fitting procedure. For each iter-

ation of the fitting procedure, we sequentially updated each pa-

rameter. To update a parameter, we varied it from 60% to 140% of

its present value in 20% increments, while leaving the other

parameters fixed, and then selected the value of the parameter for

which the model provided the highest correlation with the exper-

imental results (we maximize the correlation, rather than minimiz-

ing the mean squared error, because the associations in the mod-

ified SOP model have no natural maximum or minimum values).

To estimate the model predictions more precisely, we averaged the

predictions of 10 runs of the model at each parameter value. We

iterated the fitting procedure until the model fit stabilized: We

stopped updating the parameters when none of the parameter

values changed during an iteration or when the model fit failed to

improve on three consecutive iterations. Although the specific

parameters found using this procedure differed when the fitting

procedure was repeated multiple times, the final predictions were

always qualitatively similar. The correlations between the final

predictions and the causal ratings were nearly identical each time

the fitting procedure was run: the standard deviation of the corre-

lations across runs was less than .001 for Experiment 1 and was

.011 in Experiment 2.

Note that although the R-W model has three parameters (a, b1,

and b2), the model is fully specified by the values of a * b1 and

b2 / b1: If the individual parameters are varied but these values

remain constant, the model makes the same predictions. When

reporting the parameter values of the R-W model, we therefore

report the values of a * b1 and b2 / b1, rather than the values of

the individual parameters. For similar reasons, for Van Hamme

and Wasserman’s (1994) learning rule and the noisy-logical asso-

ciative model, we report the values of a1 * b1, a2 / a1, and b2 / b1,

rather than reporting the individual parameter values. Finally, we

only report the value of k3 for the comparator hypothesis when it

influences the predictions of the model.

In Experiments 1A and 1B, the predictions for the associative

models used the following best fitting parameters. R-W model:

a * b1 5 0.66 and b2 / b1 5 0.62; Van Hamme and Wasserman’s

(1994) learning rule: a1 * b1 5 0.58, a2 / a1 5 –0.37, and b2 / b1 5

0.67; comparator hypothesis4: k1 5 –0.75, k2 5 0.49, k3 $ 40, and

a 5 1.33; the modified SOP model: PI¡A1 5 .37, l 5 0.028, r 5

0.004, Ns 5 496, and Nd 5 27; the noisy-logical associative model:

a1 * b1 5 0.32, a2 / a1 5 –0.62, and b2 / b1 5 0.48.

In Experiment 2, the predictions for the associative used the

following best fitting parameters. The R-W model: a * b1 5

0.33 and b2 / b1 5 0.76; Van Hamme and Wasserman’s (1994)

learning rule: a1 * b1 5 0.35, a2 / a1 5 – 0.31, and b2 / b1 5

1.05; the comparator hypothesis: k1 5 – 0.72, k2 5 0.39, and

a 5 0.51; the modified SOP model: PI¡A1 5 .64, l 5 0.07, r 5

0.13, Ns 5 1,187, and Nd 5 80; the noisy-logical associative

model: a1 * b1 5 0.23, a2 / a1 5 – 0.39, and b2 / b1 5 1.41.

4 Predictions did not differ significantly for k3 $ 40. The values for k3

and a lie outside what might be considered their natural range (between
zero and one), but these values produced the best fit. When these values
were constrained to be less than or equal to 1.0, the qualitative predictions
of the model were similar, and the fit was only slightly worse (MSE 5

0.070 compared to MSE 5 0.064).
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