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Computing dynamic classification images from
correlation maps
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We used Pearson’s correlation to compute dynamic classification images of biological motion in a point-light display. Ob-
servers discriminated whether a human figure that was embedded in dynamic white Gaussian noise was walking forward or
backward. Their responses were correlated with the Gaussian noise fields frame by frame, across trials. The resultant cor-
relation map gave rise to a sequence of dynamic classification images that were clearer than either the standard method of
A. J. Ahumada and J. Lovell (1971) or the optimal weighting method of R. F. Murray, P. J. Bennett, and A. B. Sekuler (2002).
Further, the correlation coefficients of all the point lights were similar to each other when overlapping pixels between forward
and backward walkers were excluded. This pattern is consistent with the hypothesis that the point-light walker is repre-
sented in a global manner, as opposed to a fixed subset of point lights being more important than others. We conjecture that
the superior performance of the correlation map may reflect inherent nonlinearities in processing biological motion, which
are incompatible with the assumptions underlying the previous methods.
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Introduction

Standard method of computing
classification images

A fundamental question in vision science is to under-
stand how the visual system represents the shape of an
object. Although the internal representation of an object is
not directly observable, it can be estimated by measuring
the influence of input stimuli on observers’ responses. The
psychophysical technique of classification images, pio-
neered by Ahumada (2002), Ahumada and Lovell (1971),
and Beard and Ahumada (1998), has been used to eluci-
date the internal representation (sometimes referred to as
a “template”) of an object, when the input stimulus is
generated by adding white Gaussian noise to the object’s
image. Ahumada’s insight was that the internal template
could be estimated from an observer’s response that was
subject to the added noise. The result of this estimation
was an image that was termed classification image. The
equation used to compute a classification image C was

C= (NAA + NBA) - (NAB + NBB)’ (1)

where N denotes the average of the noise fields across
the trials where the stimulus was S (S € {A,B}) and the
observer responded R (R € {A,B}) in a discrimination
experiment with two targets, A and B. This method of cal-
culating a classification image, termed here the “standard”
method, has led to many successful applications in studying
low- and middle-level visual perception (Abbey & Eckstein,
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2002; Eckstein & Ahumada, 2002; Gold, Murray, Bennett,
& Sekuler, 2000; Watson & Rosenholtz, 1997).

As Ahumada (2002, p. 123) carefully noted, the stan-
dard method in Equation 1 was developed as a heuristic to
integrate the four average noise fields. Others have refined
the method to increase the sensitivity and robustness of
classification images (Abbey & Eckstein, 2002; Neri, 2004;
Neri & Heeger, 2002; Neri, Parker, & Blakemore, 1999;
Nykamp & Ringach, 2002; Thomas & Knoblauch, 2005).
For example, Murray, Bennett, and Sekuler (2002) derived
an optimal solution for calculating classification images,
under the assumption that internal noise is additive and fol-
lows a Gaussian distribution. We will refer to this method
as the optimal weighting model. The goal of this method
was to select the optimal weights for each average noise
field to maximize the signal-to-noise ratio (SNR) of the
classification image: SNR(C) = ||E(C)||2/VAR(C), where
||X||2 = le-z, E(-) is expected value, and VAR(") is variance.

When tllle observer is unbiased, such that p,4 = ppp, the
classification image calculated by the optimal weighting
method is the same as Ahumada’s method in Equation 1;
accordingly, we will refer to both methods as standard ex-
cept when it is necessary to distinguish them in cases of
response bias. It follows that Ahumada’s method is opti-
mal when the observer is unbiased. The optimal weighting
method by Murray et al. extended the applicability of the
classification image technique to include biased observers,
multiple signal contrasts, and confidence ratings. Nonethe-
less, as Murray et al. noted, their method relies on a noisy
linear cross correlator that assumes the additive Gaussian
internal noise and linearity. Therefore, the weighting
method that is optimal when these assumptions are satisfied
may not be optimal when they are violated.
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Discriminating biological motion and the
method of correlation maps

The fundamental assumptions of the standard method—
additive Gaussian internal noise and linearity—appear to
hold reasonably well, empirically, in low-level visual tasks
such as traditional discrimination of static stimuli (Cohn,
Thibos, & Kleinstein, 1974; Legge, Kersten, & Burgess,
1987; Pelli, 1985). It is unknown, however, how well the
method applies to dynamic stimuli with a high-level visual
task such as discriminating point-light human walkers
(Cutting & Kozlowski, 1977; Johansson, 1973). This study
will address this question empirically. The study will also
investigate how well a classification “movie” can be ob-
tained using a basic correlation method, which will be re-
ferred to as a correlation map. This method, employed
in perceptual psychophysics (Richards & Zhu, 1994), is
closely related to the technique of reverse correlation in
receptive field estimation in physiology (Chauvin, Worsley,
Schyns, Arguin, & Gosselin, 2005; Jones & Palmer, 1987;
Ringach, Hawken, & Shapley, 1997).

The usefulness of computing correlations to derive clas-
sification images has been widely recognized. For ex-
ample, Eckstein and Ahumada (2002) emphasized, “The
central concept of the technique is the correlation of ob-
server decisions with noisy stimulus features over sets
of stimuli” (p. 1). In fact, Beard and Ahumada (1998)
defined a classification image as a correlation map:
“A perceptual classification image for a stimulus is the
correlation over trials between the local noise contrast and
the observer’s responses to that stimulus.”

Despite this definition, however, the standard method is
not exactly equivalent to correlation, as shown in Appendix
A. This difference can be characterized as different
weightings of the four noise fields Ngg in Equation 1. As
summarized in Appendix A, the standard method weights
the four equally, and the optimal weighting method weights
them according to the (possibly biased) responses psgr, the
proportion of a response R when signal S is presented. The
weights in the correlation method follow a normalized
quadratic function of pgg. Although the sample correlation
(Pearson’s correlation) is a biased estimator of the popu-
lation correlation (Fisher, 1915; Zimmerman, Zumbo, &
Williams, 2003), the bias is negligible when the sample
size is large and the correlation is weak, which is typically
the case in classification image studies. Therefore, the sam-
ple correlation is practically an unbiased and consistent
estimator of the population correlation. Nevertheless, the
theoretical significance of this property remains an open
question in classification image studies.

Empirically, as will be shown in the next section, we
have found that correlation maps gave rise to statistically
significant classification movies that depict the influence of
noise pixels at point-light locations on observers’ responses.
In comparison, the standard methods failed to produce
any discernable classification movies. In Appendix B, we
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demonstrate in a toy problem that the correlation method
can indeed outperform the standard methods when the sys-
tem is nonlinear.

Experiment: Discriminating

biological motion

Method

Stimuli were presented on a 15-in. Dell monitor with a
refresh rate of 75 Hz and resolution of 1024 x 768 pixels.
At the viewing distance of 57 cm (maintained via a chin
rest), each pixel subtended 1.62 arcmin. The monitor was
calibrated with a Minolta CS-100 photometer.

A biological motion sequence in one walking cycle
was generated by a walk designer in Poser 4 software
(MetaCreations Inc.). The motion sequence simulated a
person walking on a treadmill. The stimulus contained a
dark gray target, which was a point-light human figure
walking either forward or backward (moon walker), inside
a light gray (46.50 cd/m?) aperture (84 x 120 pixels,
2.27 x 3.24 deg in visual angle), centered on a black
background (1.96 cd/m?).

Each point light in the target was displayed as a square of
5 x 5 pixels (0.14 x 0.14 deg). The 11 point lights included
the points of head, one shoulder (only one was visible from
the side), elbows, hands, one hip, knees, and feet. The
movie was composed of 20 frames, presented at a rate of
67 ms/frame, for one complete walking cycle (Figure 1).
The first and last frames were identical. The backward-
walking movie was simply the reverse of the forward-
walking movie. Accordingly, the first frames of the two
movies were identical. Throughout the movie sequence,
the hip point remained stationary; hence, its location com-
pletely overlapped in the two movies. For the other 10 point
lights, the number of pixel locations that overlapped across
the two targets varied from frame to frame. Keeping the hip
point stationary for both walking targets and presenting
the two movies in a small aperture were intended to help
reduce positional uncertainty of the human figure.

Spatiotemporal Gaussian luminance noise, independently
and identically distributed, was generated and added. The
root-mean-square contrast of the noise was held constant at
0.2 in the entire experiment. The target was defined as the
point-light stimulus without noise. The contrast of the tar-
get walker against the gray background was defined as the
signal contrast, which was constant across frames.

Prior to the experiment, a psychometric function was
measured at five signal contrast levels: .08, .17, .29, .53,
and 1.00 in Weber contrast, with 80 trials per level. Con-
trast threshold of 72% correct was used as the signal con-
trast in the first experimental block. Subsequently, one
up and one down block-by-block staircase was used to
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Figure 1. Top: Frames 3, 6, 9, 12, 15, and 18 in the forward-walking target. Bottom: the same frames with added dynamic noise.

maintain accuracy within the 70-75% correct range. The
step size of the staircase was 0.02. One block consisted of
1,000 trials.

Each trial began with presentation of the static first frame
in maximal signal contrast (1.00 in Weber contrast), which
lasted for 500 ms. This static “anchoring” frame was used
to reduce spatial uncertainty without introducing any cues
for the subsequent movie because the first frames of the two
targets were identical. A walker movie embedded in dy-
namic noise was then presented either forward or back-
ward. Participants pressed one of two keys to respond. No
feedback was provided.

Author H.L. and two naive observers, J.H. and J.R., par-
ticipated in the experiment. For H.L.. and J.R., the forward-
walking direction was to the right. For J.H., it was to the
left. All three participants ran 10,000 trials over 5 days.

Results and discussion

The average accuracies of H.L., J.H., and J.R. were 71%,
72%, and 75%, respectively. All participants biased toward
the forward-walking response: H.L., f = .45; J.H., B = .64;
and JR., p = .87 (if no bias, f = 1). Three methods
were used to calculate dynamic classification images:
the standard method defined in Equation 1 (Ahumada &
Lovell, 1971), the optimal weighting method defined in
Equation A3 (Murray et al., 2002), and the correlation
method defined in Equation A4. Figure 2 presents the re-
sults for observer J.R., with six frames from the resultant

classification images. Observers H.L. and J.H. yielded
similar results. (All classification movies are provided as
supplemental materials. Click here to view the movies.)

Both standard methods failed because no discernable
classification images could be found. In comparison, the
correlation map yielded clear classification images. Figure 3
depicts significantly nonzero correlation pixels (p < .01) in
the six frames shown in Figure 2C.

An important substantive question in the study of
biological motion is whether all point lights are attended
to in perceiving biological motion in a global manner
(Bertenthal & Pinto, 1994; Pinto & Shiffrar, 1999;
Shiffrar, Lichtey, & Heptulla Chatterjee, 1997) or whether
some point lights are more important than others. For
example, there is evidence that hands and feet may carry
more motion information than the other joints (Mather &
Murdoch, 1994) and, hence, may be more important in the
discrimination. A third possibility is that the perception of
biological motion depends on some combination of both
global and local processing (Thornton, Pinto, & Shiffrar,
1998).

Classification images can address this issue by examin-
ing whether the noise pixels in the various point lights have
comparable influences on responses. We performed an
analysis using all those point-light pixel locations in each
frame that differentiated between the two targets (i.e., ex-
cluding those pixel locations that overlapped between the
forward and backward walkers). The absolute correlation
values of overlapplng pixels were, as expected, close to 0
(less than 10~ )
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Figure 2. Frames 3, 6, 9, 12, 15, and 18 of the dynamic classification movies from observer J.R. Allimages have been normalized to the full range
of contrast [0, 255]. Classification images obtained from (A) the standard method, (B) the optimal weighting method, and (C) the correlation-
map method. White pixels indicate positive correlations (backward walker); black pixels indicate negative correlations (forward walker).

Figure 3. Frames 3, 6, 9, 12, 15, and 18 in the classification movie depicting pixels with significant correlations (p < .01), from Figure 2C.
White pixels indicate positive correlations (backward walker); black pixels negative correlations (forward walker).
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Figure 4 shows the values of correlation coefficients of
the 10 point lights, averaged over the 20 frames and over
nonoverlapping pixels in each point light. For all observers,
mean correlations for every point light were reliably posi-
tive for the backward walker and negative for the forward
walker, with no apparent systematic variations in correla-
tions across the individual point lights. To assess the results
statistically, we conducted a repeated measures analysis of
variance (ANOVA) on the mean correlations of point lights
with two factors: walking direction (forward vs. backward)
and the 10 different point lights. This ANOVA yielded a
significant main effect of walking direction, F(1,2) = 19.53,
p = .048. Neither the main effect of point lights, F(9,18) =
1.18, p = .37, nor the two-way interaction, F(9,18) = 1.75,
p = .15, was significant. The lack of any reliable differences
in the correlations across individual point lights suggests
that all point lights had comparable influences on the dis-
crimination process. These results are consistent with the
hypothesis that discrimination of biological motion in our
task is based on global processing, rather than on charac-
teristics of local features. Here, global processing does not
necessarily mean that all available sources of information,
namely, all the nonoverlapping point-light pixels, were op-
timally used. We also note that the above analysis expects
to find a statistically significant difference between point
lights if the participants consistently attended to a fixed
subset of point lights throughout the experiment. However,
if a participant only attended to a subset of point lights and
randomly switched from one random subset to another be-
tween frames or between trials, then we cannot rule out this
possibility from the above analysis.

General discussion

This study extended the technique of classification im-
ages in discriminating point-light biological motion stimuli.
For these stimuli, the correlation method provided clearer
classification images than the standard method. Because the
correlation method outperformed the standard methods in
calculating classification images, we conjecture that substan-
tial nonadditive Gaussian noise or substantial nonlinearities in
the decision process were present in the task (see Appendix B
for a demonstration of the advantage of correlation method).
We acknowledge, however, that we do not yet have a way
to characterize the presumed noise and nonlinearities in
biological motion perception.

Figure 4. Point-light correlation results for three observers. The
mean correlation in a forward walker and a backward walker as a
function of 10 point lights, including points of head (Hd), shoulder
(Sd), leftelbow (LE), left hand (LH), right elbow (RE), right hand (RH),
left knee (LK), left foot (LF), right knee (RK), and right foot (RF). Point-
light correlations were averaged over nonoverlapping pixels and the
20 frames. Error bars represent standard error of the mean (SEM).
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The technique of classification images potentially provides
a useful tool for the study of biological motion. This study
applied the correlation method to address a controversy con-
cerning the relative importance of global versus local pro-
cessing in discriminating biological motion. The results of
this correlation analysis revealed that noise positioned at each
distinct point light had comparable influence on discrimina-
tion responses. This result implies that global processing of
visual information dominates in the recognition of biological
motion. The present experiment thus provides an example of
how classification images can be used to address important
questions concerning biological motion.

Future work is needed to develop and refine the cor-
relation method in computing classification images. For
example, we do not yet know how bias influences the re-
sultant classification images derived by the method or
when and to what extent the method is nonoptimal. What
is important is that there is a natural way to extend the
correlation analysis to the more general framework of
multiple regressions for calculating classification images.
Specifically, the correlation map in this article is a zeroth-
order correlation, which can characterize the linear re-
lationship between responses and noise fields. In future
work, semipartial correlations can be computed to re-
construct subtler influences of noise on responses using
stepwise multiple-regression analysis. By integrating clas-
sification image computations with the general framework
of multiple regressions, more advanced statistical ap-
proaches can be applied to increase the power of the tem-
plate reconstruction. For example, logistic regression can
be applied to predict the relationship between binary re-
sponses with a set of variables that may be continuous,
discrete, dichotomous, or a mix thereof. Future research
needs to address the issue of how classification images
can be optimized without restrictive assumptions about
internal noise and processes. As methods for calculating
classification images become more robust and optimized,
the range of potential applications to perception and cog-
nition will correspondingly broaden.

Appendix A: Different weightings

of the standard and correlation
methods

In a discrimination experiment, a dynamic stimulus g
consists of two components, a noise field N in which each
noise pixel is independently sampled from a Gaussian dis-
tribution with mean 0 and variance o and one of the two
signals {A,B} representing the two targets, respectively.
The stimulus g can be described as

g; = A} + N}, if signal A is presented (A1)
g; = B} + N, if signal B is presented,
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where g;, A;, and N;, respectively, represent the stimulus,
the signal, and the noise pixel values of the jth pixel in the
tth frame.

The resulting classification movie (the dynamic analog
of a classification image) is calculated frame by frame in-
dependently. The classification image in the 7th frame can
be calculated with the standard method and the optimal
weighting method, respectively,

C'= (N:m + NltiA) - (N/ZAB + Nl;B)a (A2)

C' = (2(G™"(pan))Njs + 8(G ' (pa))Npy) (a3
- (g(G_I(PAB))N/th + g(G_l(pBB))Nl;B)'

The correlation method is based upon the sample cor-
relations between noise at each individual pixel and an ob-
server’s response across trials. The response in one trial is
denoted as R € {—1,1}, where R = 1 if the response is A
and R = —1 otherwise.

t i

(@ i) ()

2 N(Ri—R)
\/ (Zowrnw?) (X2 - ne’) | (A4

where 7 is the total number of experimental trials whereby
targets A and B are each presented n/2 trials, N' = )y Ni/n

corr

is the average noise field of the rth frame across all trials,
R; is the response on the ith trial, and R = ) R;/n is the

mean response. If the observer is unbiased, the mean re-
sponse R is 0.

It is possible to reformulate the correlation method as
a function of the four average noise fields. This formula-
tion will further clarify how the correlation method is re-
lated to the standard methods. Given that pys = 2n44/n,
Equation A4 can then be rewritten as

— —t — — — —
i (PaaNy +peaNg ) (1=R) = (pasNys + 155Ny (1+ R)

N e ey

(AS)
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where Z(Nf)2 — n(N')* = \/né%, in which 6% is the es-

timator of the variance of the noise field. /> R? —nR? can

1
be ignored because it is a constant. Given pys + pap =
Pea +pag =1 and pas + ppp = 2p., in which p. denotes the
overall accuracy, the mean response R can be calculated
as follows:

R = (1144 + nga) ; (45 + n54) = 2ppa +2p.—2. (A6)

Substituting Equation A6 into Equation A5, we have

—2p% 4+ (2p. + 1 _
L W (a7

—2p 3 —2p. —
+ Ppa + (A Pe)PBA N)tBA
ON

_ _2P§\B + (3 — 2pc)pas N’

6_N AB
_ 2pp + (2pe + 1)pss N’
6_N BB*

By comparing Equations A2, A3, and A7, we see that
the methods differ in their weights, wgg, on the four aver-
age noise fields.

Another way to describe the difference between the cor-
relation and standard methods is as follows (we thank the
anonymous reviewer for pointing this out). This is based
on the observation that correlation method does not treat
A trials and B trials differently, whereas the standard
method does. In the denominator of the second line of
Equation A4, the left term is proportional to the standard
error of noise fields (which varies little from pixel to pixel
when there are a large number of trials). This standard
error does not depend on observer responses. The right
term in the denominator depends only on the response
bias and does not vary from pixel to pixel; accordingly,
it is a scale factor. The numerator can be rewritten as
Y NiR;—Y NiR. The second term is proportional to the

i N . . . . .
mean noise contrast, which varies little from pixel to pixel,

and does not depend on observer trial-by-trial responses. It
follows that Z NIR; is the only term that depends on trial-

by-trial respolnses. Given that R = *1, this term serves to
add up all the noise fields where the responses are A and
subtract all the noise fields where the responses are B. In
the standard methods, the trials are averaged within four
stimulus—response categories.
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Appendix B: A toy example

demonstrating the advantage
of the correlation method

We now provide simulation results on a toy discrimi-
nation task to demonstrate the advantage of the correlation
method in a nonlinear case. Two targets (T) composed of
six pixels were defined as [0 1 0 0 0 0] and [1 0 0 0 0 O],
respectively. A model observer discriminated the target
with a noisy stimulus input, that is, a target image I con-
taminated by a Gaussian white noise field N with the
mean being O and the variance being 0.16. A nonlinear
transformation was imposed on the noisy input. An inter-
nal noise field Z was multiplied afterward. The internal
noise field Z follows the same Gaussian distribution as the
external noise field N. The model observer computed a de-
cision variable s using s = |[{Z; exp(I; + N))) — T||*/||(Z;
exp(; + N;)) — T,||?, where {-) denotes an element-by-
element multiplication and || H2 denotes the Euclidean dis-
tance. The value of the decision variable was compared
with a 0.9 threshold that introduces a response bias in the
model observer’s performance.

Classification images were calculated with the three
methods above in an experiment with 10,000 trials. We
simulated the model observer in 1,000 repetitions of the
experiment. In each repetition, randomly sampled noise
fields were generated to compute a classification image.
The sample mean and the sample variance of classification
images over the 1,000 repetitions were used to compute
the SNR to compare the quality of classification images.
The average accuracy of the model observer was .70. The
average bias was § = .77 (if no bias, f = 1). The SNR of
classification images was 7,334 for the standard method,
6,311 for the optimal weighting, and 8,493 for the cor-
relation map. The simulation result that the greatest SNR
was obtained with the correlation method demonstrated as
an example that, at least in certain situations, this method
could outperform the standard methods when nonlinearity
was introduced.

Simulations with the same qualitative results were also
obtained using an additive internal noise with variance that
depended on the input contrast. Specifically, the deci-
sion variable s was s = ||(Z; + exp(; + N)) — T,||*/||<z; +
exp(; + N)) — T,|*, where noise field Z followed a
Gaussian distribution with a mean of 0 and a standard de-
viation of exp(I + N).
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