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How can humans acquire relational representations that enable analogical inference and other forms of
high-level reasoning? Using comparative relations as a model domain, we explore the possibility that
bottom-up learning mechanisms applied to objects coded as feature vectors can yield representations of
relations sufficient to solve analogy problems. We introduce Bayesian analogy with relational transfor-
mations (BART) and apply the model to the task of learning first-order comparative relations (e.g.,
larger, smaller, fiercer, meeker) from a set of animal pairs. Inputs are coded by vectors of continuous-
valued features, based either on human magnitude ratings, normed feature ratings (De Deyne et al.,
2008), or outputs of the topics model (Griffiths, Steyvers, & Tenenbaum, 2007). Bootstrapping from
empirical priors, the model is able to induce first-order relations represented as probabilistic weight
distributions, even when given positive examples only. These learned representations allow classification
of novel instantiations of the relations and yield a symbolic distance effect of the sort obtained with both
humans and other primates. BART then transforms its learned weight distributions by importance-guided
mapping, thereby placing distinct dimensions into correspondence. These transformed representations
allow BART to reliably solve 4-term analogies (e.g., larger:smaller::fiercer:meeker), a type of reasoning
that is arguably specific to humans. Our results provide a proof-of-concept that structured analogies can
be solved with representations induced from unstructured feature vectors by mechanisms that operate in
a largely bottom-up fashion. We discuss potential implications for algorithmic and neural models of
relational thinking, as well as for the evolution of abstract thought.
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One of the hallmarks of human reasoning is the ability to form
representations of relations between entities and then to reason
about the higher order relations between these relations. Whereas
concepts such as larger and smaller, for example, are first-order
relations, potentially derivable by comparing features of individual
objects, a relation such as opposite is a higher order relation
between relations (Gentner, 1983). The capacity to represent and
reason with higher order relations has been considered central to
human analogical thinking (Gentner, 2010; Halford, Wilson, &
Phillips, 2010; Holyoak, 2012).

The development of knowledge about comparative relations
provides a clear illustration of these human abilities. By the time

they reach school age, children have acquired the ability to accu-
rately assess whether one object (e.g., bear) is “larger” or “smaller”
than another (e.g., fox), even under speed pressure (McGonigle &
Chalmers, 1984). Moreover, like those of adults (Moyer & Bayer,
1976), children’s judgments show a symbolic distance effect: The
greater the magnitude difference between the two items, the faster
the comparison can be made. Such symbolic comparisons are
presumably based on stored representations of the perceptual di-
mensions associated with the individual concepts. A great deal of
evidence—particularly, parallels between performance with sym-
bolic and perceptual comparisons—suggests that humans and
other species share a basic mechanism for representing continuous
quantities on a “mental number line” (Dehaene & Changeux, 1993;
Gallistel, 1993; Moyer, 1973). Moreover, rhesus monkeys are
capable of learning shapes (Arabic numerals) corresponding to
small numerosities (one to four dots), such that the shapes acquire
neural representations overlapping those of the corresponding per-
ceptual numerosities (Diester & Nieder, 2007).

These species-general achievements are impressive. However,
human children go on to acquire a deeper understanding of com-
parative relations. For example, they learn that the relations larger
and smaller have a special relationship to each other (a type of
antonym). Analyses of corpora of child speech have identified
systematic use of such gradable antonyms by children aged 2–5
years (Jones & Murphy, 2005), and experimental studies show that
by at least 6 years of age children can use such concepts meta-
phorically (Gardner, 1974), and are aware that antonyms are
contradictory (Glass, Holyoak, & Kossan, 1977). Children even-
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tually understand that a pair of concepts like larger–smaller is
related in basically the same way as the pair faster–slower, allow-
ing them to see that such pairs of relations form analogies.

It seems that “something special” happens that enables humans
to acquire higher order relational representations. Animals of many
taxa have the basic ability to detect and act based on perceptual
relations, as exemplified by classic work on relational transposi-
tion in rats (Lawrence & DeRivera, 1954), and rudimentary nu-
merical processing is clearly available to many primate and other
species (see Gallistel, 1993). Nonetheless, there is a great deal of
evidence that the relational capacities of humans exceed those of
any other species, perhaps in a qualitative fashion (Penn, Holyoak,
& Povinelli, 2008; Povinelli, 2000). The difference has been
characterized as a human capacity for relational reinterpretation:
the ability to transform perceptually grounded relations into ex-
plicit relational structures that distinguish the roles of relations
from the objects that fill them (Doumas & Hummel, 2012), aug-
mented by the additional ability to form higher order relational
concepts (e.g., representations of hidden causes, or mental states of
others).

From a computational perspective, the challenge is to explain
what it might mean for a relation to be reinterpreted or rerepre-
sented into a more explicit and abstract form, and to develop
formal models of such a process. How could an inductive system
ever get from some initial pool of perceptually available features to
more abstract concepts corresponding to higher order relations
(e.g., opposite), which seem not to be based entirely on the set of
perceptual features that provided a starting point? The difficulty of
the learning problem is compounded by evidence that children
seem to acquire concepts largely from modest numbers of positive
examples provided by adults (Bloom, 2000; see Xu & Tenenbaum,
2007).

An important part of the recipe for abstraction may be a pool of
innate concepts. For example, Carey (2011) has argued, “There is
no proposal I know for a learning mechanism available to nonlin-
guistic creatures that can create representations of objects, number,
agency, or causality from perceptual primitives” (p. 115). But as
Carey also argues, constructive mechanisms may operate over
some combination of perceptual inputs and preexisting concepts to
create new types of mental representations. Part of a learner’s
innate endowment may be processes that permit various forms of
bootstrapping, whereby one type of representation is transformed
into another. For example, there is evidence that analogical rea-
soning may play an important role in children’s acquisition of
natural number (Carey, 2011; Opfer & Siegler, 2007; see also
Gentner, 2010; Kurtz, Miao, & Gentner, 2001).

Goals of the Present Article

In the present article we present a new model of the induction of
relational representations, Bayesian analogy with relational trans-
formations (BART). In general terms, BART is a computational-
level model1 (Anderson, 1991; Griffiths, Chater, Kemp, Perfors, &
Tenenbaum, 2010; Marr, 1982) that employs bootstrapping to
acquire and transform relational representations. We apply BART
to the domain of relations related to comparative judgment. Al-
though this is only a special case of the more general problem of
relation learning, it is a domain that offers the advantage of a

wealth of empirical evidence—behavioral, comparative, develop-
mental, and neural—that can guide theory development.

Our particular focus will be on a restricted but nonetheless
realistic subdomain: relations definable over continuous-valued
features associated with animal concepts. The basic inputs pro-
vided to the model are vectors of feature values for a set of
dimensions. Our first goal is to have the model learn a represen-
tation of first-order relations such as larger and smaller, fiercer
and meeker, based on empirical priors (i.e., prior knowledge itself
acquired by learning simpler concepts from relevant data) coupled
with a limited set of positive examples instantiating relations. The
use of empirical priors in learning is an example of a simple form
of bootstrapping, whereby initial learning of a different or simpler
concept provides a useful basis for acquiring more complex con-
cepts. Similar ideas have been exploited in neural network models
of learning (e.g., Bao & Munro, 2006; Elman, 1993; but see Rohde
& Plaut, 1999). Newport (1990) argued that children’s cognitive
limitations (e.g., less capacity in working memory) may actually
benefit certain aspects of language acquisition. Halford, Wilson,
and Phillips (1998) proposed that children are able to learn one-
place predicates (e.g., large, small) prior to two-place relations
(e.g., larger, smaller) because the former require less working
memory capacity. Given the strong evidence for this sequential
progression in children’s concept acquisition (e.g., Smith, 1989),
we will focus on the potential use of one-place predicates as the
basis for forming empirical priors to facilitate learning of compar-
ative relations.

The use of only positive training examples makes it possible to
acquire a stable and context-independent representation of a rela-
tion (whereas negative examples can be of many different types,
and the learned relational representation will vary depending on
which negative examples are encountered). We aim to demonstrate
that the acquired representations of relations are generalizable (i.e.,
can be used to evaluate novel instantiations of the relations) and
are sensitive to a basic factor that influences the difficulty of
human relational judgments.

Our second goal is to show how these first-order relational
representations can be transformed and rerepresented so as to
allow the model to evaluate higher order analogy problems of the
form A:B::C:D instantiated by the learned relations (e.g.,
larger:smaller::fiercer:meeker, rather than fiercer:slower). This
transformation process is based on what we term importance-
guided mapping, a subsymbolic form of analogical mapping based
on similarity of weights associated with object features. Our over-
all aim is to provide a proof-of-concept that, for the domain of
comparative relations, the capacity to solve structured analogy
problems can be acquired by applying basically bottom-up learn-
ing mechanisms to raw inputs consisting of object concepts coded
as simple feature vectors.

Judgments Based on Comparative Relations

Our target domain, comparative relations, is tied to a rich body
of cognitive research. Comparative judgments exhibit a number of

1 Although BART focuses on the computational level of analysis, its
implementation includes assumptions at the level of representation and
algorithm.
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robust empirical phenomena. The most notable is the semantic
distance effect (Moyer, 1973; Moyer & Landauer, 1967). Strong
empirical evidence indicates that the long-term memory represen-
tation of a relation such as larger includes quantitative information
that makes the difficulty of comparison decline as the magnitude
difference increases. The symbolic distance effect is observed not
only with quasiperceptual dimensions such as size, but also with
more abstract dimensions such as animal intelligence (Banks,
White, Sturgill, & Mermelstein, 1983) and such concepts as ad-
jectives of quality (e.g., good, fair; Holyoak & Walker, 1976).
Although magnitude representations exhibit analog properties,
much like an internal number line (e.g., Woocher, Glass, & Ho-
lyoak, 1978), magnitude comparisons do not in general depend on
visual imagery (Holyoak, 1977). Nonhuman primates also exhibit
a distance effect for judgments of numerosity (see Nieder &
Miller, 2003, for a review). Given its ubiquity, the distance effect
is arguably the primary signature that a learned representation of a
comparative relation is psychologically realistic; hence the dis-
tance effect will be the first empirical focus in our evaluation of
BART. In the General Discussion we consider how BART might
be extended to explain additional phenomena involving compara-
tive judgments.

In human children, comparative adjectives emerge as early words
in the lexicon, with clear developmental trends (Smith, 1989; Smith &
Sera, 1992). In general, children progress from a global sense of
similarity and dissimilarity of objects to learning one-place predicates
that focus on specific dimensions of individual objects (big, small), to
learning two-place comparative relations between multiple objects
(bigger, smaller). As noted earlier, children eventually detect higher
order similarities and differences between comparative relations,
coming to understand, for example, that higher and lower are polar
opposites. Less is known about the details of this part of the devel-
opmental progression, but presumably a prerequisite for learning a
higher order relation approximating gradable opposite is to first
achieve some degree of mastery with pairs of first-order comparative
relations, such as higher and lower.

The acquisition of relations is intimately related to the development
of analogical reasoning ability. A great deal of evidence indicates that
children’s ability to think analogically changes over the course of
cognitive development (e.g., Z. Chen, Sanchez, & Campbell, 1997;
Gentner & Toupin, 1986; Holyoak, Junn, & Billman, 1984; Tunteler
& Resing, 2002, 2004). The developmental transition toward greater
reliance on relational structure has been termed the relational shift
(Gentner & Rattermann, 1991). The empirical phenomenon of a
relational shift is well established, but there has been some debate
regarding the developmental mechanisms that may underlie it. Con-
siderable evidence indicates that some changes are maturational,
involving increases in working memory capacity (Halford et al.,
1998) and inhibitory control (Morrison, Doumas, & Richland, 2011;
Richland, Morrison & Holyoak, 2006). However, it is universally
accepted that learning new relations is a prerequisite for solving
analogy problems based on these relations (Goswami, 1992, 2001). In
the present article we focus on relation learning, the most basic
mechanism required for analogical reasoning.

Approaches to the Acquisition of Relational Concepts

In recent years a number of different approaches to modeling the
induction of relational concepts have been explored, which we will

briefly review. We begin by laying out some criteria that we
believe are of general importance in evaluating psychological
theories of relation learning, including the present model.

1. Choice of inputs: The model should be capable of learning
from inputs of realistic complexity that were independently gen-
erated. There is certainly much to be gained from exploratory work
using small hand-coded inputs, and specifying realistic represen-
tations poses many challenges. However, without some tests using
independently generated inputs, it is difficult to assess the extent to
which a model may owe its successes to the foresight and charity
of the modelers. In addition, the model (unless it explicitly as-
sumes that all relational representations are innate) must be able to
learn at least some relations from inputs that are nonrelational
(e.g., object representations).

2. Learning efficiency: As a psychological model, learning
should be achieved on a human time scale as measured by the
number of training examples required to produce at least partial
success. Given that children seem to be able to acquire preliminary
understanding of many concepts from relatively few examples, a
model should also be able to demonstrate efficiency by learning
from a modest number. Although what “relatively few” means is
inevitably vague, our focus will be on what can be learned from up
to 100 or 200 positive training examples.

3. Generalization: The model should be able to make accurate
relational judgments about novel examples. It is not sufficient to
show that the model can learn the training examples as “relational
facts”; it must also be able to apply its relational representations
productively.

4. Performance difficulty: The difficulty of human relational
judgments can be modulated by many factors. To be considered
psychological, a model should account for at least some sources of
differential difficulty in relational judgments for humans (and/or
other animals).

5. Flexible reasoning: Relational knowledge plays an essential
role in human reasoning and thinking, in essence providing a
deeper source of information about conceptual similarity. Accord-
ingly, the relational representations acquired by the model should
be usable (either directly or after some additional learning process)
to perform a variety of tasks that require relational reasoning (e.g.,
solving analogy problems).

These criteria are inherently qualitative rather than quantitative.
Alternative assessment metrics could no doubt be advanced, but
we have found the above criteria helpful in evaluating previous
work on relational learning, as well as the models we test in the
present article.

Vector Space Models

There is an extensive literature on automated methods for ex-
tracting relations based on the statistics of word or phrase co-
occurrence in a large corpus of text. One class of methods, termed
vector space models, originates from an information retrieval
technique of the same name, and uses vectors or matrices in which
the value of each element is derived from the frequency of some
event, such as the frequency with which a certain word appears in
a particular document or phrase (for reviews, see Turney, 2006;
Turney & Pantel, 2010). For example, latent semantic analysis
(LSA; Landauer & Dumais, 1997) yields vector representations of
individual words by applying singular value decomposition to
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lexical co-occurrence data from a large corpus of text. LSA has
proved useful in many applications that require measures of se-
mantic similarity of concepts (Wolf & Goldman, 2003), including
modeling the retrieval of story analogs (Ramscar & Yarlett, 2003).
However, LSA vectors do not provide any direct basis for identi-
fying abstract relations between concepts (although some modest
results have been achieved by exploiting LSA vectors for relation
words, such as opposite; Quesada, Kintsch, & Mangalath, 2004).

Related machine-learning algorithms have achieved greater suc-
cess by working directly from co-occurrence data for word com-
binations found in a large corpus of text (Turney & Littman, 2005).
Perhaps the most successful method is latent relational analysis
(Turney, 2006), which has been applied to the task of solving
Scholastic Aptitude Test verbal analogy problems (e.g.,
quart:volume::mile:distance). The algorithm searches for patterns
of words in which the A and B term (and their synonyms) appear
(e.g., “quarts in volume”). The frequencies of the various patterns
are used to create a vector of relational features for A:B; vectors
are similarly formed for potential C:D completions. Cosine simi-
larity is calculated to compare the A:B vector to the corresponding
vectors created for various alternative C:D pairs, and the most
similar C:D is selected as the analogical completion. Latent rela-
tional analysis achieves a level of accuracy on Scholastic Aptitude
Test analogy problems comparable to that attained by college
students.

Vector space models such as latent relational analysis provide
effective machine-learning tools for extracting relational similar-
ity. However, these models operate directly on texts that include
relational vocabulary. Our present focus is on learning from inputs
based on representations of individual object concepts (including a
set of such inputs that is derived from texts by a method similar to
LSA).

Hierarchical, Generative Bayesian Models

Perhaps the most ambitious line of work has focused on hier-
archical Bayesian models that integrate statistical learning with
explicit representations of higher order relational structures (Good-
man, Ullman, & Tenenbaum, 2011; Kemp, Perfors, & Tenenbaum,
2007; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). For ex-
ample, Kemp and Tenenbaum (2008) showed how Bayesian tech-
niques can operate on relational structures to learn systems such as
hierarchies and linear orderings (see also Kemp & Jern, 2009;
Kemp, Tenenbaum, Griffiths, Yamada, & Ueda, 2006). In general
terms, these hierarchical models are generative (MacKay, 2003) in
the sense that representations of alternative relational structures are
used to predict incoming data, and the data in turn are used to
revise probability distributions over alternative structures. The
highest level of the structure typically consists of a formal gram-
mar or a set of logical rules that generates a set of alternative
relational “theories,” which are in turn used to predict the observed
data.

Although hierarchical generative models are extremely power-
ful, the models to date have generally focused on systems of
formal relations that have a well-defined logical structure known
to the modeler (e.g., hierarchies, rings, or chains). The set of
possible relational structures is provided to the system by speci-
fying a grammar that generates them. Since the postulated gram-
mar of relations is not itself learned, the generative approach

(although certainly incorporating inductive learning) retains rather
strong nativist assumptions.

Neural Network Models

The BART model, like generative Bayesian models, operates at
the computational level; however, its emphasis on bottom-up
learning and emergence overlaps with the goals of algorithmic
approaches to relation learning and analogy based on neural net-
works (e.g., Gasser & Colunga, 2000; Jani & Levine, 2000; Leech,
Mareschal, & Cooper, 2008; Rogers & McClelland, 2008; see
McClelland et al., 2010). Our model shares the general aim of
seeking emergence of structure from statistical operations over
minimally structured inputs, coded as feature vectors.

A standard connectionist approach to learning relational struc-
tures has been to create a feed-forward network in which separate
pools of input units are used to code features of an object in a role
and of a relation. These pools interact via a hidden layer and
thereby activate output units representing another filler of the role.
Rogers and McClelland (2008) developed a model based on this
type of architecture that learns simple propositions (e.g., “a canary
can fly”). The model takes a sequence of input–output pairs and
over repetitions adjusts the connection weights to learn facts of the
form “canary” � “can” 3 “fly.” The Rogers and McClelland
model succeeds in capturing a number of important general char-
acteristics of human learning, such as progressive differentiation of
concepts and domain-specific feature weighting.

However, models of this sort (including that of Leech et al., 2008,
a variation of the same architecture that aimed to account for how
children learn to solve simple analogy problems) have not been shown
to generalize to dissimilar training items, nor have they been extended
to higher order relations. The Leech et al. (2008) model fails on even
simple variations of its own training materials. For example, after
being trained extensively with the various components required to
solve the four-term analogy apple:sliced-apple::bread:sliced-bread,
the model cannot generalize its knowledge to evaluate
sliced-apple:apple::sliced-bread:bread, where the roles have been
reversed (Holyoak & Hummel, 2008; see also French, 2008; Petrov,
2008).

A basic problem is that standard neural network models offer no
way to represent relational roles. In connectionist networks of
relation learning, both objects and relations are coded as distrib-
uted patterns of weights on links that serve as conduits for acti-
vation passed between units. The learned representations of rela-
tions therefore remain implicit, and relational knowledge cannot be
accessed in a flexible fashion (cf. Halford et al., 2010). For
example, in the Rogers and McClelland (2008) model, the repre-
sentation of an object (e.g., canary) is inherently linked to a
particular pool of relation-specific input units. As a consequence,
after training the network that one thing a canary can do is fly, the
model (unlike a human) would not be able to infer that one kind of
thing that flies is a canary (i.e., make an inference in which canary
serves as the output rather than input).

Symbolic Connectionist Models

The acquisition of relational structure has been a long-standing
concern in the literature on analogical reasoning. Gick and Ho-
lyoak (1983) proposed that as a consequence of comparing and
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mapping one situation to an analogous one in a different content
domain (e.g., a military and medical problem), humans can learn
relational schemas for more abstract categories. Hummel and
Holyoak (1997, 2003) developed a symbolic connectionist model,
LISA (learning and inference with schemas and analogies), which
is able to form such schemas by comparing and mapping exam-
ples. However, LISA’s learning algorithm works by recombining
preexisting (and hand-coded) relational concepts, rather than by
building new relational predicates.

More recently, Doumas, Hummel, and Sandhofer (2008) devel-
oped a related model called DORA (discovery of relations by
analogy) that addresses the fundamental goal of creating new
relational predicates from nonrelational inputs. The basic repre-
sentational assumptions of DORA are very similar to those of
LISA, with both objects and roles of relations represented in a
distributed fashion over a pool of semantic units. Relations are
explicitly represented by localist units that code individual roles
(e.g., larger would be coded by units for the larger object and for
the smaller one in a pair). Bindings of objects to roles are coded
dynamically in working memory by temporal patterns (synchrony
in LISA, close asynchrony in DORA), and statically in long-term
memory by conjunctive units. Because relations are represented
explicitly and independently of their fillers, DORA (like LISA, but
unlike classical connectionist models) is able to flexibly generalize
relations to new contexts. But like more traditional neural net-
works, objects and relations are represented in the same basic way
(as patterns of weights on links connecting units that code seman-
tic features).

The basic learning algorithm used by DORA is to first compare
feature representations of individual objects, creating new predi-
cate units that connect to shared features (e.g., from the objects
elephant and bear, a new one-place predicate connected to the
shared feature large might be generated). Later, a pair of objects
respectively instantiating the one-place predicates large and small
(e.g., elephant and mouse) might be compared to another pair
instantiating these same predicates (e.g., walrus and frog). With
the aid of a comparator operator that can activate the features more
and less based on the specific size values of paired objects, DORA
might then generate the two-place predicate larger, with its first
role connected to more and large and its second role to less and
small. As additional examples of paired objects are encountered,
sequential updating will refine the relational representation, honing
in on features that prove to be invariant across examples.

The progression of learning comparative relations in DORA—
from objects encoded as features to one-place predicates such as
large, to two-place relations such as larger (that then undergo
gradual refinement)—parallels the general developmental se-
quence identified by Smith (1989; Smith & Sera, 1992) and others
in studies of children’s acquisition of comparative relations. But
although DORA can generate human-like patterns of relation
learning, the robustness of its learning algorithm has not been
extensively tested. So far DORA has only been tested with small
hand-coded representations of objects as inputs, and the relations
it learns are coded with features drawn from the same set already
provided in these inputs. In particular, DORA assumes that in its
inputs, all metric dimensions describing objects (e.g., size, speed)
are coded by localist units. The model is also endowed with units
representing relational features such as more and less, and with a
comparator that will activate these relational features when given

two objects associated with values on the same metric dimension.
The model tacitly assumes that all relational predicates are defin-
able by at least one precoded invariant feature (and the modelers
ensure that the inputs satisfy this assumption).

Discriminative Bayesian Models

In contrast to the hierarchical, generative Bayesian models dis-
cussed above, simpler Bayesian models of category learning (e.g.,
Anderson, 1991; Fried & Holyoak, 1984) operate in a more
bottom-up fashion. An important variant is discriminative Bayes-
ian models (MacKay, 2003), which focus on learning the proba-
bilities of categories given features (rather than the probabilities of
features given possible categories). Discriminative models have
been applied with considerable success to analysis of neural re-
ceptive fields in neurophysiology (Rust, Schwartz, Movshon, &
Simoncelli, 2005; Victor, 2005) and construction of classification
images in psychophysics (Eckstein & Ahumada, 2002; Lu & Liu,
2006). They also provide valuable tools in other complex statistical
tasks, such as the recognition of brain states based on neuroimag-
ing data (Bayesian decoding models; see Friston et al., 2008).

A discriminative Bayesian approach to relation learning was
developed by Silva, Heller, and Ghahramani (2007), who applied
their model to tasks such as identifying classes of hyperlinks
between web pages; Silva, Airoldi, and Heller (2007) applied the
same model to classifying relations based on protein interactions.
Although this model was developed to address applications in
machine learning, the general principles can potentially be incor-
porated into models of human relational learning. The BART
model represents such an effort.

One key idea is that a relation can be represented as a function
that takes a pair of objects as its input and outputs the probability
that these objects instantiate the relation. The model learns a
representation of the relation from labeled examples and then
applies the learned representation to classify novel examples. A
second key idea is that relation learning can be facilitated by
incorporating empirical priors, which are derived via some simpler
learning task that can serve as a precursor to the relation learning
task. In particular, Silva, Heller, and Ghahramani (2007) explored
the usefulness of first teaching the model a general distinction
between related and unrelated object pairs and then using the
learned representation of the general relation (related) as the
empirical prior to bootstrap learning of each specific relation of
interest. D. Chen, Lu, and Holyoak (2010) incorporated a similar
empirical prior into a model for learning abstract semantic rela-
tions, such as synonym and antonym, from features derived by
LSA (Landauer & Dumais, 1997).

These models have demonstrated some success in generalization
tests involving identifying novel examples of learned relations.2

2 In the present article we refer to this type of test as “relational
generalization,” whereas it has been called “analogical reasoning” in the
machine-learning literature (Silva, Airoldi, & Heller, 2007). The task is
indeed closely related to first-order analogical reasoning, in which the
relation between A and B concepts (generally objects) is assessed to
determine if it is sufficiently similar to the relation between C and D
concepts (e.g., Turney, 2006). In contrast, the “analogy” problems de-
scribed in the present article require second-order analogical reasoning,
which is based on the similarity of relations between relations.
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However, none of the models attempted to account for systematic
sources of difficulty in human relational judgments, nor did they
attempt to show that the learned relational representations could in
turn be used to reason about higher order relations.

BART: Overview

Choice of Input Representations

BART’s inputs are restricted to vectors representing objects, so
that all the model’s relational knowledge must be acquired from
nonrelational inputs. Specifically, we focus on learning compara-
tive relations from feature representations of animal concepts. In
accord with the first of the criteria for model evaluation we laid out
earlier, we wished to ensure that the inputs we used were not
hand-coded by the modelers. We chose three sets of input repre-
sentations that can be viewed as complementary in their advan-
tages and challenges for testing a learning model.

The first set of inputs can be characterized as simple and
transparent (low dimensionality, localist coding of magnitudes).
These were feature vectors derived from human ratings of animals
on four magnitude continua (size, speed, fierceness, and intelli-
gence; Holyoak & Mah, 1981). No doubt it is oversimplified as a
psychological model to assume that each dimension is coded by a
single value; nonetheless, there is in fact strong evidence that
humans and other primates are equipped with specialized neural
circuitry for dealing with approximate magnitude on various di-
mensions (e.g., Cantlon, Brannon, Carter, & Pelphrey, 2006; De-
haene & Changeux, 1993; Fias, Lammertyn, Caessens, & Orban,
2007; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Piazza,
Mechelli, Price, & Butterworth, 2006; Piazza, Pinel, Le Bihan, &
Dehaene, 2007; Pinel, Piazza, Le Bihan, & Dehaene, 2004). As a
practical matter, the simplicity of the rating-based representations
(comparable to that of the hand-coded representations employed
by Doumas et al., 2008) will prove helpful in understanding how
the model operates.

To assess BART’s potential to scale up to learn relations from
more complex inputs, we also applied the model to input vectors
derived from much more challenging databases (high dimension-
ality, distributed coding of magnitudes). Our second set, which we
will refer to as the “Leuven inputs,” was based on norms of the
frequency with which participants at the University of Leuven
generated features characterizing various animals (De Deyne et al.,
2008). Each animal in the norms is associated with a set of
frequencies across more than 750 features. Although some features
in the Leuven inputs have prima facie relevance to the dimensions
of interest to us, none were as direct as the Holyoak and Mah
(1981) ratings of specific magnitude dimensions. The Leuven
inputs have been successfully used as inputs for a Bayesian model
of categorization (Shafto, Kemp, Mansinghka, & Tenenbaum,
2011).

Our third set of inputs was taken from the topics model (Grif-
fiths, Steyvers, & Tenenbaum, 2007). The topics model is broadly
similar to LSA (Landauer & Dumais, 1997), taking words in
documents as its input and yielding approximate semantic repre-
sentations of individual words as its output. The topics model uses
Bayesian inference to associate each word in the corpus with a set
of “topics,” which theoretically generate the words. For example,
a topic that could loosely be characterized as finance would tend to

generate such words as money, savings, and bank (in the sense of
financial institution). For each word, a vector (typically of length
300) based on conditional probabilities of each topic given the
word can be interpreted as a distributed semantic representation
over feature values. Relative to the Leuven inputs, the topics inputs
were much more opaque, in that the meaning associated with each
topic is generally difficult to characterize; unlike the rating inputs,
individual topics do not correspond in any obvious way to the
magnitude dimensions underlying the critical comparative.

Vectors based on the Leuven inputs or topics avoid any hand
coding of inputs by the modeler. There is thus is no danger that we
the modelers have inadvertently planted to-be-discovered relations
in the inputs provided to our learning model. Whereas the simple
vectors based on human ratings provide magnitude information
very directly, the more complex Leuven and topics vectors do not.
To preview our computational results, BART achieves near-
perfect performance on generalization and analogy tests after
learning from the rating vectors, excellent performance using the
much larger Leuven inputs, and reliable though imperfect perfor-
mance based on the yet more complex topics inputs.

Of course, there is no reason to believe that any of these
representations directly correspond to the inputs available to hu-
man children when they first learn basic relations. The Leuven
inputs perhaps come closest, as they include many features of
animals that children would likely know. Children have much
more direct access to perceptual and motoric features of objects,
which can guide relation learning (e.g., Maouene, Hidaka, &
Smith, 2008). In addition, children’s learning of relations is clearly
guided by linguistic cues from adults (e.g., Yoshida & Smith,
2005).

Nonetheless, children surely are faced with considerable com-
plexity in the inputs from which some relations are acquired; hence
any plausible model will have to demonstrate robustness. By
testing BART with inputs derived from three independent sources,
we can have some confidence in the robustness of qualitative
aspects of model performance that hold true across all three inputs.
For the Leuven and topics inputs, the learning task demands that in
a high-dimensional space, BART must infer distributed patterns of
features that implicitly code the dimensions over which the model
aims to learn relations. In addition, the model must then remap the
acquired weight distributions to solve structured analogy prob-
lems. The complexity of the learning task would likely be com-
parable (or greater) for inputs further enriched by perceptual and
motoric features. In the General Discussion we consider how the
approach used by BART might be extended to operate on such
inputs.

Overview of the Operation of BART

Stages. Broadly speaking, BART proceeds in two stages:
First-order relation learning. Given feature vectors corre-

sponding to pairs of objects, the model uses statistical learning to
update weights associated with feature dimensions for various
comparative relations (e.g., larger, fiercer), and then uses its
learned weights to decide whether novel pairs instantiate a speci-
fied relation. As shown in the right-hand plot in Figure 1, BART
represents a relation using a joint distribution of weights over
object features. Weight distributions code not only first-order
statistics (means) but also second-order statistics (variances and
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covariances) that capture the uncertainty of the estimated weights,
as well as interweight correlations.

Importance-guided relation mapping. To evaluate potential
analogies between pairs of relations (e.g., larger:smaller::
fiercer:meeker), the model rearranges the order of dimensions in
acquired weight distributions for the source and target relation
pairs to yield transformed relation representations. The transfor-
mation is based on an assessment of importance of each dimension
in the source pair, and on the correspondence of weight patterns
between the source and the target pair.

Learning first-order relations. BART is capable of learning
flexibly from any combination of positive and negative examples;
however, we focus on learning from positive examples only (as
children are able to do; see Bloom, 2000). Importantly, positive
examples make it possible to achieve a relatively context-free
relational representation, rather than one that varies with the par-
ticular types of negative examples included in the training set. In
addition, because children often appear to learn useful approxima-
tions of concepts from small numbers of examples, we aimed to
make learning in BART as efficient as possible, focusing on what
the model can learn from a modest number of examples (a range
of up to about 200). Also, children’s relation learning is clearly
guided by linguistic inputs from adults (e.g., Gentner, Anggoro, &
Klibanoff, 2011; Yoshida & Smith, 2005). In natural speech to
children, comparative relations are given names, such as “larger,”
which are explicitly connected to positive examples (“the elephant
is larger than the hippo”). Accordingly, BART focuses on super-
vised learning using labeled positive examples.

Bayesian framework. BART learns a first-order relation by
estimating the distribution of a corresponding weight vector w
from a set of training pairs that constitute examples of that relation,
as schematized in Figure 1. We adopt a Bayesian framework to
learn the probability distribution of P(w � XS, RS), where XS

represents the feature vectors for object pairs in the training set, the
subscript S indicates the set of training examples, and RS is a set

of binary indicators, each of which (denoted by R) indicates
whether a particular pair of objects instantiates the relation or not.
The vector w constitutes the learned relational representation,
which can be interpreted as weights reflecting the influence of the
corresponding feature dimensions in X for relation judgment.
Learning a first-order relation is based on estimating the posterior
distribution of weights, which can be computed by applying
Bayes’s rule using the likelihood of the training data and the prior
distribution for w:

P�w � XS, RS� �
P�RS � w, XS�P�w�

�wP�RS � w, XS�P�w�
. (1)

The likelihood is defined as a logistic function for computing the
probability that a pair instantiates the relation, given the weights
and feature vectors,

P�R � 1 � w, X� � �1 � e�wTX��1. (2)

This likelihood function has been used in Bayesian logistic regression
analysis, and in similar Bayesian models of relation learning de-
scribed by Silva, Airoldi, and Heller (2007) and Silva, Heller, and
Ghahramani (2007). The logistic function is also commonly used in
neural networks to introduce nonlinearity into activation functions.

We assume that the prior P(w) in Equation 1 follows a multi-
variate normal distribution, P(w) � N(�0, V0) with a mean of �0

and a covariance matrix of V0. A primary focus of the present
article is on the potential role of informative priors in relation
learning. The key to efficient statistical learning is a good choice
of priors, especially when the learning problem involves high
dimensionality. Proposals for priors typically stem from abstract
theory (Griffiths & Tenenbaum, 2009; Kemp & Tenenbaum, 2008;
Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008) or analyses of
statistics of the natural environment (Geisler, 2008; Griffiths &
Tenenbaum, 2006; Lu, Lin, Lee, Vese, & Yuille, 2010; Simoncelli
& Olshausen, 2001). Here we explore a variation of what are

Figure 1. Graphical representation of the general framework for relation learning in Bayesian analogy with
relational transformations. (Left) Two objects A and B in a pair are represented as a vector x of n features for
each object; vector w represents the unknown relational weights that define a relation R, which is learned by
using the training set of examples instantiating this relation (e.g., whale–alligator, where the intensity of cells
represents feature values on each dimension; light indicates high positive values, dark high negative values).
(Right) The relation is represented as the joint normal distribution of weights w. The normal distribution is defined
with two parameters: the mean weights vector (shown in the mean plot, in which the intensity indicates the values of
mean weights) and the covariance matrix of weights including the variance of each weight (diagonal cells in the
covariance plot) and the covariances among them (off-diagonal cells in the covariance plot).
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termed empirical priors, which are themselves learned from rele-
vant data, combined with a hyperprior for variances of weights.

Empirical priors. BART takes advantage of the potential for
inductive bootstrapping, using previously acquired knowledge of
simpler concepts to establish empirical priors that guide subse-
quent learning of more complex concepts. Previous work has
explored use of a general relation (related) as an empirical prior
for learning more specific relations (D. Chen et al., 2010; Silva,
Airoldi, & Heller, 2007). Here we consider the potential usefulness
of more specific empirical priors tailored to individual relations.
There is strong linguistic evidence (across many languages) that
two-place comparatives are derived from corresponding relative
adjectives either by adding a morpheme (e.g., large yields large �
er, termed the synthetic form) or by creating a phrase using more
or less (e.g., intelligent yields more intelligent, termed the peri-
phrastic form; see Graziano-King & Cairns, 2005). Psychological
evidence also indicates that comparative relations such as higher
are initially derived from the corresponding one-place predicates
(e.g., high; see Smith, Rattermann, & Sera, 1988). In choosing the
appropriate priors, it seems probable that children are guided by
lexical similarities (e.g., larger is similar to large, smaller to
small). However, to increase the generality of the model, we make
the weaker assumption that the learner must infer the most relevant
one-place predicate from the actual pairs used as positive training
examples for the comparative.

We use one-place predicates as the building blocks for creating
empirical priors. To determine which one-place predicate should
be used to construct the empirical prior for learning a particular
relation, we developed a simple categorization algorithm to select
the one-place predicates based on training data. First, we train
BART on the eight categories of one-place predicates (e.g., large,
small, fierce, meek) that can be formed with the extreme animals at
each end of the four magnitude continua (size, speed, fierceness,
and intelligence). For example, we used the 20 largest animals
(e.g., whale, dinosaur, elephant) to learn the category of large
animals and the 20 smallest animals (e.g., flea, fly, worm) to learn
the category of small animals. As schematized in Figure 2, cate-
gory learning of one-place predicates is conducted with Bayesian
logistic regression, with a standard normal distribution for weights
(i.e., mean 0 and variance 1) as the prior to infer the weight
distribution P(wc � Xc), in which wc indicates the weight vector
corresponding to feature dimensions of an object, and Xc denotes
the extreme animals in each group used for category learning.

Second, we employ a simple voting procedure to select the
“best” category of one-place predicates based on the training
examples for the comparative. For each pair of objects (XA, XB) in
the training data for relation learning, we compute the probability
that each individual object is a member of each category of
one-place predicates, obtaining P(C�XA) and P(C�XB), respectively.
If P(C�XA) � P(C�XB) for a pair, a score of 1 is assigned to this
category; otherwise, a score of 0 is assigned. These scores are
summed over all the pairs of training data. In effect, the procedure
for prior selection aims to identify the one-place predicate that best
distinguishes the objects in the two relational roles (i.e., the cate-
gory of which the first object is maximally more likely than the
second to be a member). The reliability of prior selection will
naturally vary with the number of training examples, yielding an
inherent source of variability in the acquisition of the relations.
Although more sophisticated categorization models could be em-

ployed, this simple procedure proved adequate for our present
purposes. For the most difficult set of inputs (topics), the method
achieved near-perfect selection of the appropriate one-place pred-
icate when given 100 training examples.

Third, the category that yields the highest summed score is
selected to set mean weights for the first role of a comparative.
Although the model is in effect informed that the relation to be
learned involves a comparison of two objects, the basis for the
comparison must be learned. The potential priors on the second
role are linked to those for the first role, by reversing the sign on
the weights for the first role to form a contrast.3 For our example,
if large were to provide the basis for the empirical priors, then the
priors for the comparative relation would include the weights of
large for the first role and the opposite weights for the second role,
as shown in Figure 2. If there is a tie in the highest summed score
between categories of one-place predicates, we simply take an
average of the multiple weight vectors to generate empirical priors.

Hyperprior. Confidence about the empirical priors boot-
strapped from object concepts is represented by the variances in
the prior distribution of weights. A simple model is to assume the
same degree of confidence for all the individual weights in the
empirical prior �0. Alternatively, confidence may vary from one
dimension to another, affording greater flexibility. We adopt
the method of automatic relevance determination (MacKay, 1992;
Neal, 1996) to define the precisions of the empirical prior using
hyperparameters. Specifically, the prior for the ith weight in vector
w is assigned in the form of a normal distribution in which the
mean is from the empirical prior and the variance is 1/�i:

P�wi��i� � N�	0i,
1

�i
�, (3)

where the value of �i (also termed precision, the inverse of
variance) controls the certainty about mean weight values derived
from the empirical prior. Thus increasing �i values imply greater
confidence that wi is similar to 	0i in the empirical prior. We use
a conjugate prior distribution in the form of a gamma distribution
for �i with two hyperparameters, a0 and b0, to constrain the
precision of each weight:

P��i� � Gamma�a0, b0�. (4)

Inference algorithm. Although the general framework of the
relation learning model is straightforward, the inference step is
nontrivial because the calculation of the integral in Equation 1
lacks an analytic solution. A sampling approach is impractically
slow for dealing with high feature dimensionality, and hence
would unduly limit the generality of the model. Accordingly, as in
Silva, Heller, and Ghahramani (2007), we employed the varia-
tional method developed by Jaakkola and Jordan (2000) for Bayes-
ian logistic regression to obtain a closed-form approximation to the
posterior distribution. Variational methods are a family of methods
that transform the problem of interest into an optimization problem

3 We considered the alternative of forming empirical priors from a
combination of two one-place predicates (e.g., large and small might be
used to set priors for larger). However, developmental evidence indicates
that young children often treat such polar opposites as disjoint, whereas
children clearly link the primary one-place predicate to its corresponding
comparative (e.g., large to larger; see Smith et al., 1988).
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by introducing an extra variational parameter, 
, which is itera-
tively adjusted to obtain successively improving approximations.
The input to the learning model includes training data X, com-
posed of N training pairs and their corresponding relation labels R
in which 1 indicates that the pair of words instantiates the relation
(positive examples) and �1 indicates it does not (negative exam-
ples). The variational updates are applied until convergence or a
maximum number of iterations is reached. For learning with an
empirical prior, the model starts from the prior mean 	0 (i.e.,
bootstrapping from knowledge about the corresponding one-place
predicates), and with V0 assumed to be an identity matrix with
variances 1 and covariances 0. On each iteration the variational
parameter 
 is updated, along with the mean of the weight vector,
�, and the covariance matrix, V, with the following updating
equations:

V�1 � V0
�1 � 2�

n�1

N

��
n�xnxn
T

� � V�V0
�1�0 � �

n�1

N

Rnxn/2�

n

2 � xn
T V � ��T �xn, (5)

where �(
) � tanh(
/2)/(4
).
For learning with a hyperprior, the variational method is itera-

tively applied to update the mean, the covariance matrix, and the
hyperparameters, as follows:

V�1 � ���A� � 2�
n�1

N

��
n�xnxn
T

� � V����A��0 � �
n�1

N

Rnxn /2�
a � a0 � 1/2

bi � b0 � ��wi � 	0i�
2 � Vii�/2


n
2 � xn

T V � ��T�xn, (6)

where wi is the ith element of weight vector w, 	0i is the ith
element of empirical prior 	0, Vii is the ith diagonal element of
covariance matrix V, and ���A) is a diagonal matrix with its ith
diagonal element given by a/bi.

Model evaluation on generalization test. To test generaliza-
tion of the learned relational representation, we conduct a transfer
task using new pairs of words, denoted by the subscript T. Given
the training pairs XS and their labels RS, the model aims to
calculate the posterior predictive probability that a target pair XT

instantiates the learned relation:

P�RT � 1 � XT, XS, RS� ��
w

P�RT � 1 � XT, w�P�w � XS, RS�.

(7)

The posterior predictive probability can be approximated with the
variational posterior (i.e., the lower bound of the predictive prob-
ability), which can be computed in a single pass through the
training data set {XS, RS} applying the updating equations as
specified in Equation 5. Hence, the probability predicted for a
transfer pair (i.e., Equation 7) can be approximated as

log P�RT � 1� XT, XS, RS� � log�g�
T�� �

T

2
� ��
T�
T

2

�
1

2
�S

TVS
�1�S �

1

2
�T

TVT
�1�T �

1

2
log

�VT�
�VS�

, (8)

where �S and VS denote the parameters in P(w � XS, RS) after
learning from the training pairs, and �T and VT denote the param-
eters in P(w � XS, RS, XT, RT � 1) found by adding the target pair
to the training set.

Higher order relation mapping. In order for any model to
have a chance to solve higher order relational analogies (i.e.,
analogies based on relations between relations), it must first
acquire at least approximate representations of the relevant
first-order relations. However, as the example in Figure 3
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Figure 2. Illustration of the construction of an empirical prior for a comparative relation (larger) by
bootstrapping from prior learning of weights for a related one-place predicate (large), in turn derived from
features of individual objects (large animals).
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makes clear, successful learning of comparative relations will
not in itself guarantee solution of analogy problems such as
larger:smaller::fiercer:meeker. For example, if we were to com-
pare the learned distributions for larger�smaller to those for
fiercer�meeker, we would find that the two joint distributions are
essentially uncorrelated. Roughly, in the former the size dimension
has large (positive or negative) weights while the other dimensions
have weights near 0, whereas in the latter the fierceness dimension
has large weights and the rest have weights near 0. Without any
mechanism to map different salient dimensions to one another, any
implicit similarity would remain hidden.

To solve higher order analogy problems, BART employs an
algorithm for importance-guided mapping. In general terms, the
algorithm aims to find a mapping between the dimensions for the
A:B relation and those for the C:D relation that minimizes a

distance measure defined over the weight distributions. Because
the full search space for this correspondence problem scales ex-
ponentially with the number of dimensions, we employ a greedy
search algorithm (Friston et al., 2008), a type of procedure de-
signed to make locally optimal choices with the hope of approx-
imating the global optimum. More specifically, the algorithm
develops a one-to-one mapping between dimensions sequentially
on the basis of the overall “importance” of dimensions. In essence,
the algorithm minimizes correspondence errors for more important
dimensions at the possible cost of greater errors for less important
dimensions.

In more detail, we assume that an analogy problem in the form
A:B::C:D is evaluated by first focusing on the relation in the
source (A:B), and then determining how well the target relation
(C:D) maps to A:B. The algorithm prioritizes dimensions in pro-
portion to their importance in A:B. Specifically, the mapping
algorithm first searches for a dimension in C:D that is most similar
to the most important dimension in A:B; it then searches for a
dimension that maps to the second most important dimension in
A:B among the remaining pool of dimensions in C:D, and so on
until each dimension in A:B is mapped to a unique dimension in
C:D. Qualitatively, BART aims to map important dimensions
in A:B to dimensions in C:D that influence relation classification
in an analogous way.

Figure 4 schematizes the algorithm for importance-guided map-
ping. Intuitively, larger�smaller and fiercer�meeker are alike in
that each has a key important dimension (size and fierceness,
respectively). Moreover, importance has a clear numerical defini-
tion based on the absolute magnitudes of weights (normalized by
their variances). To evaluate an analogy in the form A:B::C:D
(e.g., larger:smaller::fiercer:meeker), the model first assesses the
importance of each dimension for A:B and then reorders the
dimensions (and transforms the distributions of mean weights)
accordingly. The transformed representation of A:B can be ob-

Figure 3. Successful learning of comparative relations is not sufficient to
solve four-term analogy problems such as larger:smaller::fiercer:meeker,
because high (positive or negative) weights are on different dimensions for
larger�smaller versus fiercer�meeker.

Figure 4. Illustration of importance-guided mapping for solving an analogy problem.
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tained in three steps: (a) compute the normalized weights using
mean weight values divided by their standard deviations; (b) sum
up the absolute values across the two roles in each of the two
relations in A:B to get an importance score for each feature
dimension; (c) rank-order the dimensions (maintaining consistency
across the two roles of both relations) based on the importance
index.

Next, for each dimension in A:B, BART selects the dimension
in C:D with the most similar pattern of weight distributions. Here
we take advantage of a natural property of multivariate normal
distributions. The marginal distribution over a subset of multivar-
iate normal random variables can be obtained by dropping the
irrelevant variables (the variables that one wants to marginalize
out) from the mean vector and the covariance matrix. The marginal
weight distributions for each feature dimension can therefore be
easily calculated for A:B and C:D, respectively. Then the similar-
ity of marginal distributions is evaluated by computing a distance
measure between two distributions.4 The J-divergence distance is
employed to maintain the symmetric property of a distance mea-
sure by summing up two Kullback–Leibler (KL) divergences
(Cover & Thomas, 2006),

D�p, q� � KL�p 	 q� � KL�q 	 p�, (9)

where p and q denote two distributions, and

KL�p 	 q� ��
x

p�x�log
p�x�

q�x�
dx.

The advantage of using normal distributions is that it becomes
possible to solve analytic expressions for the distance measure
with the means and covariance matrices of the two normal distri-
butions,

D�p, q� �
1

2
�	p � 	q�

T�Vp
�1 � Vq

�1��	p � 	q�

�
1

2
trVp

�1Vq � Vq
�1Vp � 2Id�, (10)

where tr[ � ] denotes the matrix trace.
Finally, having transformed the C:D distribution to reflect its

mapping to A:B, BART uses the overall J-divergence distance
between the two transformed distributions as its measure of how
well the C:D relation matches that of A:B. For our example, the
transformed representations will identify size as the most impor-
tant dimension for larger�smaller, and then select fierceness as
the dimension for fiercer�meeker that has the most similar mean
weight distribution to that of size for larger�smaller. The result-
ing transformed distributions will map size to fierceness, thereby
contributing to a lower overall J-divergence distance (i.e., higher
similarity) for A:B::C:D than for a C:D� foil such as
fiercer�slower.

Note that BART evaluates relational analogy problems without
forming an explicit representation of a higher order relation such
as opposite. Rather, BART estimates the degree of match between
the C:D and A:B relations under the assumption that similar
relations (whatever they may be) will generate lower J-divergence
distance between the two mean weight distributions based on the
correspondences produced by importance-guided mapping. In the

General Discussion we consider how an extension of BART might
go on to acquire explicit representations of higher order relations.

Tests of BART Using Rating Inputs

Inputs. The rating vectors used as inputs to BART were
based on norms reported by Holyoak and Mah (1981), collected
for use in a study of symbolic magnitude comparisons. Holyoak
and Mah had 25 undergraduates rate the subjective magnitude of
each of 80 animal names on four continuous dimensions: size,
speed, fierceness, and intelligence. Ratings were made on a 9-point
Likert scale, with a rating of 9 indicating maximum magnitude.
Magnitude norms for each dimension were then derived by suc-
cessive interval scaling (Bock & Jones, 1968). This method pro-
vides a simultaneous normalization of the responses to each item
across the nine response categories, yielding what can be inter-
preted as an interval scale. The resulting values (which for each
dimension correlated .99 with mean ratings) were normalized to
range from 0 through 10. A few examples are shown in Table 1
(see Holyoak & Mah, 1981, Table 1, p. 200, for the entire set of
norms). Because the ratings reflect subjective magnitude differ-
ences, the norms incorporate the typical nonlinear relationship
between subjective and objective magnitudes (e.g., the norms
indicate that the difference in subjective size between a goldfish
and a cat is roughly the same as that between a deer and a
hippopotamus). Of the 80 animals in the norms, topics represen-
tations were available for 77, and all simulations were based on
this subset. Intercorrelations among the four dimensions across the
77 animals were moderate, ranging from .38 (size with speed) to
.60 (size with fierceness).

Each of the 77 words thus initially corresponded to a vector of
four continuously valued features, with all values being nonnega-
tive. However, the logistic likelihood function used by BART is
designed to map values between negative and positive infinity onto
the outcome variable, with the value of 0 serving as the natural
midpoint of the input scale. Accordingly, we centered the rating
vectors by a linear transformation, subtracting from each value the
mean value for that dimension across all 77 words. Thus the
feature values in the vectors used as inputs to BART included both
negative and positive values with means of 0.

In our tests, both training and test items were created by ran-
domly selecting pairs of animals and concatenating their rating
vectors. Thus, each input vector had two components: the four
features of Animal 1 and the four features of Animal 2. To ensure
that the differences in magnitudes between animals in a pair were
likely to be distinguishable by humans, we constrained all training

4 A simpler variant of importance-guided mapping is based on just
maximum a posteriori probability (MAP) estimates (i.e., mean weights)
rather than on entire covariance matrices. Indeed, in exploring all three data
sets reported in the present article, we have found that the simpler variant
yields virtually the same performance as the version based on the full
covariance matrix. The covariance matrix plays important roles in guiding
the acquisition of the MAP estimates during learning, and aids in relational
generalization, but apparently is not essential in subsequent analogical
processing. In the present article we describe the complete version of
importance-guided mapping for the sake of computational generality, but
the simpler MAP variant may well be more psychologically realistic (see
General Discussion). The MATLAB code provides the simpler variant as
an option.

627RELATION LEARNING



and test pairs to be based on animals differing by at least 0.50 on
the relevant dimension. Under this criterion, over 2,000 animal
pairs were available as positive examples for each to-be-learned
relation.

Training. For the purpose of generating empirical priors, the
20 animals that were “greatest” and “least” on each dimension
were first used to train BART to classify each of the eight possible
one-place predicates (i.e., large, small, fierce, meek, etc.). For this
initial phase of learning, the priors on all weights were set to
standard normal distributions (i.e., means of 0, variances of 1,
covariances of 0).

In learning two-place relations, we tested two models. The first
model was a version of BART that selected empirical priors for
means of weights based on one-place predicates as described
earlier (e.g., the mean weights for large might be selected to
provide the priors for the first role of larger, with the second role
set by replicating the weights for large as a contrast). Priors for
variances were set to 1, and those for covariance were set to 0.
(Because the learning task with rating inputs proved to be ex-
tremely easy for BART, a hyperprior was not used in these
simulations.) For comparison, a baseline model simply used un-
informative priors (standard normal distributions). We trained and
tested BART on each of the eight comparative relations involving
the animal ratings (larger, smaller; fiercer, meeker; smarter,
dumber; faster, slower). If one assumes that training examples are
randomly sampled from the same population, the solutions for
polar-opposite relations (e.g., larger and smaller) would be ex-
pected to converge at asymptote with symmetrical weight distri-
butions (i.e., distributions with weights reversed between the two
roles). This result was clearly obtained, so we will only report
generalization results for the four “greater” relations. However, the
analogy results are based on learned representations of all relations
(“lesser” as well as “greater”).

Generalization performance.
Basic tests. On each run, we trained the model on some

number (1–100) of randomly selected pairs that constituted posi-
tive examples of the target relation (and satisfied the minimum
difference criterion). All the remaining pairs in the pool (both
positive and negative examples) were then used as test pairs. For
test pairs, negative examples were created by simply reversing the
“correct” order of the two animals for the target dimension. The
number of test pairs that instantiated a relation was always equal to

the number that did not instantiate it (since they involved the same
animals in reverse order).

A test pair that instantiated the relation was counted as correct
if its posterior predictive probability of being an example of the
relation was greater than .5, whereas a test pair that did not
instantiate the relation was counted as correct if its predicted
probability was less than .5. This criterion assumes that the model
is unbiased. When trained solely with positive examples, it is
plausible that a learning model might develop an overall bias
favoring a “yes” response. Based on signal detection theory, sen-
sitivity after correcting for possible bias can be measured with the
Az measure (Dorfman & Alf, 1969), which calculates the area
under the receiver operating characteristic (ROC) curve. For the
ratings data, the criterion of .5 in fact proved to be optimal prior to
reaching ceiling accuracy in generalization performance, indicat-
ing that BART’s generalization decisions were unbiased within
this range. Accordingly, we will simply report percent correct.

All reported results are based on the average performance over 100
runs, each of which randomly selected a set of training pairs from the
pool. Figure 5 depicts BART’s generalization curves for the four
“greater” relations as a function of the number of training examples.
Learning was very successful for all relations. The BART model with
empirical priors generalized moderately accurately after a single train-
ing example (mean of 71% correct across all relations), and reached
96% correct after 20 training trials. BART’s learned representations
of one-place predicates thus provided effective empirical priors for the
two-place comparative relations. The baseline model with uninforma-
tive priors (means of 0) started at a substantially lower level of
performance (mean of 59%) and required about twice as many train-
ing examples (40) to reach 95% accuracy. After 100 training exam-
ples, both models converged at near-perfect accuracy (99% correct) in
generalization. These results demonstrate that at least when magni-
tude information is transparently coded in small input vectors, BART

Figure 5. Accuracy in the generalization task with rating vectors as a
function of the number of training examples for the four comparative
relations (log scale). Solid lines indicate the performance of Bayesian
analogy with relational transformations (BART) with the empirical prior;
dashed lines indicate the performance of a baseline model (Bayesian
logistic regression model with uninformative prior).

Table 1
Examples of Ratings of Animals on Four Dimensions
of Magnitude

Animal Size Fierceness Intelligence Speed

Alligator 5.46 8.88 3.67 5.03
Cow 6.52 3.95 3.35 4.59
Flea 0.00 2.52 0.24 3.65
Goldfish 1.91 1.35 1.45 4.18
Moose 7.04 5.98 3.96 6.29
Mouse 2.41 3.08 3.34 5.02

Note. Adapted from “Semantic Congruity in Symbolic Comparisons:
Evidence Against an Expectancy Hypothesis,” by K. J. Holyoak and M. A.
Mah, 1981, Memory & Cognition, 9, p. 200. Copyright 1981 by Springer.
Adapted with permission.
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can learn comparative relations very efficiently from a modest num-
ber of positive examples, especially when guided by empirical priors.

To determine whether the relational representations acquired by
BART yield the ubiquitous symbolic distance effect obtained for
comparative judgments by humans, we examined how BART’s
probability estimates (using the full model with empirical priors)
relate to the rated subjective distance between each test pair of
animals on the dimension of interest (i.e., size, fierceness, intelli-
gence, or speed). Distance effects are generally revealed in reac-
tion time paradigms. Although BART does not provide a process
model of speeded judgments, standard models of reaction time
(e.g., Link, 1990) would predict that reaction time as a measure of
judgment difficulty will have an inverse monotonic relationship to
the log ratio of posterior probabilities that each ordering of a pair
fits the indicated relationship (e.g., for a pair such as elephant–
horse, a positive log ratio will indicate that elephant is larger than
horse, with the predicted difficulty of the discrimination decreas-
ing as the log ratio becomes increasingly positive).

Distances were grouped into five bins based on interitem dis-
tance in ratings on the relevant continuum (i.e., animals very
similar in size fell in Bin 1, animals maximally different in size fell
in Bin 5). Distance bins are based on Holyoak and Mah’s (1981)
norms, in which values range from 0 to 10: Bin 1 (distances
between 0.5 and 2), Bin 2 (distances 2–4), Bin 3 (distances 4–6),
Bin 4 (distances 6–8), and Bin 5 (distances 8–10). Figure 6 plots
the log ratio of the predicted posterior probability for each positive
test pair compared to the predicted probability for the reversed pair
as a function of distance between the pair after learning based on
40 training pairs, averaged across the four comparative relations.
Consistent with a symbolic distance effect, the log ratio increases
with distance.

Generalization beyond the range of training examples. The
basic generalization tests described above always involved test
pairs that had not been shown during training. We also performed
a series of computational experiments to determine whether BART
is capable of generalizing to new types of pairs that in various
ways go beyond the range of the training examples.

1. One test introduced pairs in a distance range outside that used
in training. Using empirical priors set in the same manner as
described previously, we trained BART on the relation larger
based on 40 positive examples drawn randomly from the first three
distance bins only (e.g., 40 pairs of animals exhibiting small or
moderate size differences for larger). We then tested the model’s
generalization performance at each of the five distance bins, using
all possible animal pairs excluding the training pairs. We again
obtained a monotonic increase in mean log ratio across all levels of
distance: 2.80, 7.12, 12.00, 16.07, and 21.13 for Bins 1–5, respec-
tively. The model thus assessed pairs of animals with large size
differences (Bins 4–5) as the best positive examples of larger.
BART’s acquired representation of larger was sufficiently robust
and flexible as to enable very accurate generalization to novel test
pairs exhibiting size differences greater than the range presented
during training.

2. Another series of generalization tests varied the magnitudes
of the individual training and test objects. For this purpose all the
animals were sorted into four roughly equally sized groups based
on their value on the relevant dimension in the Holyoak and Mah
(1981) norms, such that animals in Group 1 have the lowest values
and animals in Group 4 have the highest values. We then trained
the model with 100 examples based on pairs of the form [4, 1]. In
other words, the first animal is drawn from Group 4 and the second
animal is drawn from Group 1 (i.e., for learning larger, the first
animal is very large and the second animal is very small). The
generalization test included all and only pairs of the form [3, 2]
(i.e., middle-sized animals). BART’s performance was similar
across the four “greater” relations with an overall accuracy of 91%,
indicating very successful generalization.

3. Because pairs of the form [3, 2] are necessarily close in
magnitude, a generalization test that includes only pairs of the
form [3, 2] is inherently more difficult than one composed of pairs
formed from all groups. For comparison with Test 2, we also
trained the model in the usual way (positive examples formed from
all groups) and then tested it on only pairs of the form [3, 2].
BART performed similarly across the four “greater” relations on
this test as well, achieving an overall accuracy of 99% after 100
training examples. In comparison, the 91% accuracy obtained in
Test 2 is somewhat lower, indicating that restricting the magnitude
range of the training items impaired generalization to some extent.

4. Another test involved training with 100 pairs of the form [2,
1] (i.e., pairs of small animals) and testing with those of the form
[4, 3] (i.e., pairs of large animals), or the reverse (training on [4, 3],
then testing on [2, 1]). This test is inherently difficult because the
training items are drawn from a restricted range and the test items
are drawn from a different restricted range (and, moreover, are
very close in magnitude). Averaged across the two variations,
generalization accuracy was 65%, 79%, 77%, and 81% for larger,
fiercer, smarter, and faster, respectively. Thus transfer from one
extreme on a continuum to the other was reliable, although imper-
fect.

Figure 6. Log of the ratio between predicted posterior probability of each
positive test pair instantiating a “greater” relation and that of the reversed
pair instantiating the relation on generalization test (rating inputs) as a
function of rated distance on the relevant continuum. Distance bins are
based on Holyoak and Mah’s (1981) norms, in which values range from 0
to 10: Bin 1 (distances between 0.5 and 2), Bin 2 (distances 2–4), Bin 3
(distances 4–6), Bin 4 (distances 6–8), and Bin 5 (distances 8–10).
Results are collapsed over the four continua.
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5. A final test ensured that the animals (not just pairs) used
during training and testing did not overlap by selecting a random
half of the animals for training and then testing on all pairs formed
by the remaining animals. After 100 training examples, BART
achieved 98% overall accuracy, indicating very successful gener-
alization to animals not encountered during training.

Analogy performance. To test BART’s ability to solve higher
order analogy problems using its acquired relational representations,
we constructed problems based on the comparative relations. If the
model is able to implicitly learn relations between relations, then its
standard training on the four sets of paired comparatives should allow
it to solve analogies based on two distinct higher order patterns, which
we will gloss as “same–extreme” (e.g., the relationship of larger to
fiercer, or smaller to meeker; see Clark, 1970, for a discussion of the
polarity of comparative relations) and “opposite” (e.g., the relation-
ship of larger to smaller, or fiercer to meeker). Table 2 gives exam-
ples of five types of four-term analogy problems that can be con-
structed by pairing one of the two higher order relations with various
foils, using the first-order relations acquired by BART. The first types
are based on same–extreme, with the foil being either an opposite pair
(Same–O) or a pair of relations at the opposite extreme of their
respective dimensions (Same–OE). The other three types are based on
opposite. The foil could be split across two dimensions (Opp–S),
reverse polarity on a dimension (Opp–R), or involve a conflict
(Opp–C) in which one relation in the foil was in fact identical to one
of the A:B terms. In such problems the analogical answer C:D has to
overcome the misleading featural identity of the D� term in the C:D
foil to the B term in A:B. Except for Same–OE problems, the C:D� (or
C�:D) foils always share one word with the analogical C:D comple-
tion.

For the first four types, chance performance would be 50% if the
A:B and/or C:D relations had not been acquired. J-divergence, like
other proposed measures of relational similarity that have been
used to model human judgments (e.g., Goldstone, 1994; Taylor &
Hummel, 2009), is sensitive to featural as well as relational over-
lap. For Opp–C analogies, expected performance in the absence of
relation learning would therefore be 0%, because the featural
overlap based on the word shared by A:B and the foil C:D� would
cause the foil always to be selected as more similar to A:B. The
Opp–C conflict set thus provided an especially challenging test of
BART’s ability to solve higher order analogies based on its learned
relational representations, directly pitting relational against fea-
tural similarity. Similar designs have been employed in studies of
human analogical mapping both with adults (e.g., Markman &
Gentner, 1993) and children (Richland et al., 2006).

To test BART’s capacity to make analogical inferences, we
created sets of each of the five types (see Table 2 for the number
of each type). BART’s assessment was counted as correct (i.e., as
an analogical response) if the calculated J-divergence distance was
lower for the analogical C:D pair than for the nonanalogical foil,
C:D� (or C�:D). Figure 7 shows the performance of BART and the
baseline model (both using the identical algorithm for importance-
guided mapping) on the five types of analogy problems. Although
both models performed extremely well after learning from ratings
inputs, BART achieved slightly higher success after fewer training
examples. The advantage of BART over the baseline model in
efficiency of learning to solve analogy problems is most apparent
for type Opp–C. After three training examples, BART begins to
show more accurate performance than the baseline model, and the
two models do not converge in their performance until after 60
training examples, at which point both models achieve essentially
perfect performance on all problem types.

These results demonstrate that the algorithm for importance-
guided mapping is in fact capable of solving structural analogies
based on learned representations of first-order relations, implicitly
finding correspondences between nonidentical dimensions based
on the importance-guided mapping operation with marginal weight
distributions. Moreover, the empirical priors proved to be effective
in establishing relational distributions that support analogical rea-
soning, especially in competition with featural similarity.

In summary, the tests with ratings vectors provide a first dem-
onstration that BART is able to learn relational representations that
pass five critical tests: (a) learning from nonrelational inputs; (b)
learning with high efficiency; (c) generalizing to new examples of
first-order relations; (d) capturing a key source of differential
difficulty in human performance, symbolic distance; and (e) sup-
porting structured analogical reasoning.

Tests of BART Using Leuven Inputs

Inputs. We next applied BART to the much more challenging
problem of learning comparative relations from high-dimensional
input representations based on the Leuven database (De Deyne et al.,
2008). As noted earlier, these norms are based on the frequency with
which participants generated features characterizing 129 animals, for
759 features. To make the results as comparable as possible to those
obtained with the ratings inputs, we used the subset of 44 animal
names from the Holyoak and Mah (1981) norms that were also
included in the Leuven database. Although this subset was substan-
tially smaller than the 77 animals used in the simulations based on

Table 2
Examples of Analogies Based on the Relations “Same–Extreme” and “Opposite,” With Various
Types of Foils

Analogy test type No. of examples Target Foil

Same–O 48 larger:fiercer::smarter:faster larger:fiercer::smarter:stupider
Same–OE 48 smaller:stupider::meeker:slower smaller:stupider::faster:fiercer
Opp–S 48 faster:slower::smarter:stupider faster:slower::smarter:meeker
Opp–R 24 larger:smaller::smarter:stupider larger:smaller::stupider:smarter
Opp–C 48 fiercer:meeker::smarter:stupider fiercer:meeker::smarter:meeker

Note. Same–O � same–extreme (opposite as foil); Same–OE � same–extreme (opposite–extreme as foil);
Opp–S � opposite (split pair as foil); Opp–R � opposite (reversed as foil); Opp–C � opposite (conflict as foil).
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ratings, it was still large enough to generate a pool of over 750 pairs
for training and generalization tests.

To construct input representations, we followed the procedure
used by Kemp, Chang, and Lombardi (2010, p. 219), who used the
Leuven norms to estimate the probability of each feature condi-
tional on each animal (see their Equation 8, top). We multiplied the
computed probability by 100 to make the magnitude range roughly
comparable to that of the rating inputs. Because the values as
described so far are based on probabilities, they necessarily are

nonnegative. As noted in connection with the rating vectors, to
optimize the scale for the logistic likelihood function, it is desir-
able to center the vectors by a linear transformation. Accordingly,
we subtracted from each feature the mean value of that feature
across all 129 animals in the Leuven norms. The feature values in
the vectors used as inputs to BART therefore included both neg-
ative and positive values, with means near 0.

To reduce the size of the search space, we focused on the most
important dimensions. Specifically, we summed the feature vec-

Figure 7. Proportion of analogical responses as a function of the number of training examples (log scale) with
rating inputs for the five types of analogy problems. Solid lines present the results for Bayesian analogy with
relational transformations (BART) with empirical prior; dashed lines present results for baseline model
(with uninformative prior). Error bars indicate 1 standard deviation (results based on 100 runs). Same–O �
same–extreme (opposite as foil); Same–OE � same–extreme (opposite–extreme as foil); Opp–S � opposite
(split pair as foil); Opp–R � opposite (reversed as foil); Opp–C � opposite (conflict as foil).
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tors for the 44 animals and identified the 50 dimensions that
yielded the largest sums (after dropping one dimension, “is small,”
that was clearly redundant with another, “is big”). By using just
these 50 most important dimensions to form vectors for each word,
the total size of the vector for each word pair was fixed at 100.

Training. The basic training regimen was very similar to that
employed with the rating vectors. To create empirical priors, we
again selected 20 animals close to each of the two extremes on
each of the four dimensions of interest. These included all the
extreme animals included in the subset of 44 for which Leuven
vectors were available (the number ranging from 8 to 15 across the
eight sets). We augmented this core group with additional animals
from the entire Leuven set of 129 animals that we judged to be
close to the relevant extremes, thus bringing the total number of
animals in each set to 20. Insofar as some of the animals used to
train one-place predicates may not have been the most extreme,
and many were not included in the subset of 44 used to train
relations, this procedure for selecting positive examples for learn-
ing empirical priors would be expected to make successful relation
learning more challenging.

The search space for the Leuven representations was much larger
relative to that for the ratings inputs used previously. Accordingly, we
aimed to improve the stability of the estimates for empirical priors by
increasing the number of examples. Given that the set of positive
examples available for each one-place predicate was necessarily con-
strained, we augmented the training pool by including negative ex-
amples. To learn large, for example, BART was given both 20
positive examples (i.e., 20 large animals) and 20 negative examples
(i.e., 20 small animals). As in the case of our simulations with rating
vectors, direct training on each comparative relation (e.g., larger) was
still based solely on positive examples.

To help cope with the greater complexity of the learning prob-
lem with high dimensionality, we used a hyperprior to increase
BART’s representational flexibility. On the basis of a preliminary
search of the parameter space, we set the values of the hyperpa-
rameters (a0, b0) to be 5 and 1, respectively. We found that
allowing BART to use the hyperprior (with hyperparameters fixed
for all simulations) tended to improve its generalization perfor-
mance by about 2 percentage points relative to using the standard
covariance matrix (the procedure used in the simulations with
rating inputs), and significantly improved accuracy in certain anal-
ogy tests. For comparison, we also tested the same baseline model
as that used with ratings vectors (i.e., Bayesian logistic regression
with standard normal distributions as uninformative priors).

Generalization performance.
Basic tests. All reported results are based on the average

performance over 10 runs, each of which randomly selected a set
of training pairs from the pool. Figure 8 depicts BART’s general-
ization curves for the four “greater” relations as a function of the
number of training examples. Not surprisingly, given the greatly
increased dimensionality of the learning problem, the level of
performance was lower overall than was obtained with the rating
vectors. However, the full BART model, with empirical priors on
mean weights and a hyperprior on variances, achieved substantial
generalization (about 80%–95% accuracy for the four “greater”
relations after 100 training examples). The baseline model showed
much weaker generalization performance, achieving only about
60%–70% accuracy overall after 100 training examples.

We also explored how BART’s generalization performance
changed with more extended training. Whereas BART appeared to
be unbiased when trained with up to 80–90 examples, a further
increase in the number of training examples led to a bias toward
“yes” responses. This type of response bias leads to reduced
accuracy if a fixed decision criterion is used. Accordingly, we
computed the Az measure, which is more robust to response bias
(Dorfman & Alf, 1969). Generalization performance as measured
by Az continued to improve slightly with increased numbers of
training examples. After 700 training examples, both BART and
the baseline model achieved an Az value of about .95.

To examine whether the relational representations that BART
derives from Leuven vectors yield the distance effect obtained for
comparative judgments by humans, we examined how BART’s
generalization performance relates to the rated subjective distance
between each test pair of animals on the dimension of interest (as
measured with the Holyoak & Mah, 1981, norms). Figure 9 plots
the mean log ratio of predicted probabilities for positive versus
negative test pairs as a function of distance on the relevant dimen-
sion between the two animals in a pair (after learning from 100
training examples). Because only 44 of the animals in the Holyoak
and Mah (1981) norms are included in the Leuven data set, we
used four distance bins instead of five. The log ratio of posterior
probabilities increased monotonically with distance. Thus, the
relational representations that BART acquired from Leuven inputs
clearly yield a symbolic distance effect.

Generalization beyond the range of training examples. As in
the case of the simulations based on ratings, we performed a series
of computational experiments to determine whether BART is
capable of generalizing to new types of pairs that in various ways
go beyond the range of the training examples.

1. Training with 100 examples from distance Bins 1–2 only and
testing on all four distance bins. We obtained a monotonic
increase in mean log ratio across all levels of distance: 1.02, 2.30,

Figure 8. Accuracy in the generalization task with Leuven inputs as a
function of the number of training examples (log scale) for the four
comparative relations. Solid lines indicate the performance of Bayesian
analogy with relational transformations (BART) with the empirical prior
and hyperprior; dashed lines indicate the performance of a baseline model
(Bayesian logistic regression model with uninformative prior).
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4.51, and 8.00 for Bins 1–4, respectively. These results again dem-
onstrate that the model assessed pairs of animals with large size
differences, in Bins 3 and 4, as the best positive examples of larger.

2. Training with 100 pairs of the form [4, 1] and testing on all
pairs of the form [3, 2]. BART’s accuracy was 89%, 67%, 73%,
and 92% for larger, fiercer, smarter, and faster, respectively,
indicating fairly successful generalization performance based on a
restricted set of training inputs.

3. Standard training with 100 pairs formed from all groups and
testing on all pairs of the form [3, 2]. BART achieved accura-
cies of 87%, 69%, 77%, and 87% for larger, fiercer, smarter, and
faster, respectively. Thus for the Leuven inputs, restricting the
training pairs to those of the form [4, 1] (Test 2) had minimal
negative impact on generalization performance.

4. Training with 100 pairs of the form [2, 1] and testing on all
pairs of the form [4, 3], or the reverse. Averaged across the two
variations, generalization accuracy was 85%, 73%, 77%, and 54%
for larger, fiercer, smarter, and faster, respectively, indicating
fairly successful generalization across magnitude extremes for the
first three relations.

5. No overlap between training and test animals. This test
was performed with 60 training examples because the Leuven
subset included only 44 animals in total. BART achieved accura-
cies of 92%, 79%, 84%, and 85% for larger, fiercer, smarter, and
faster, respectively, indicating fairly successful generalization to
animals not encountered at all during training.

Content of learned weight distributions. To convey a sense
of the content that BART used to learn comparative relations from
the Leuven inputs, Figure 10 depicts typical mean weights for the
four “greater” relations that the model acquired using 100 training
examples. For each relation the 50 dimensions are ordered by
importance. Several qualitative observations are of interest. First,

the representations are clearly contrastive, with positive (light)
weights associated with important weights on the first role and
negative (dark) weights associated with the second role, or vice
versa. Second, among the more important weights, the positive
value is predominantly associated with the first role. This is
the type of relational information that indicates to BART that these
comparatives are in fact oriented toward the “greater” extremes of
their respective continua.

Third, the representations are highly distributed. For each rela-
tion, upward of 20 corresponding dimensions (i.e., 40 weights)
show clear contrasts between the two roles. Unlike the rating
vectors, in which a single dimension provided a localist code for
each continua, the Leuven vectors lack any single dimension that
suffices to define any comparative relation. To take the most
salient example, one might have supposed that “is big” would be
sufficient to predict relative size. In fact, although this dimension
is indeed the single most important predictor of which object is
larger, it is far from sufficient. The Leuven dimensions were
derived from the frequencies with which participants generated
features, rather than from a continuous rating scale of the sort used
to create the Holyoak and Mah (1981) norms. Accordingly, in the
Leuven data set, animals for which size is a salient dimension
(often in reference to a subcategory) tend to have higher feature
values for “is big.” Based on a comparison of feature values on that
dimension alone, the Leuven data set indicates that, for example,
an eagle is larger than a hippopotamus, a seagull is larger than a
horse, and a cow is the same size as a pelican. However, BART is
able to flexibly integrate weakly predictive information provided
by dozens of individual dimensions to successfully learn and
generalize the comparative relations.

Analogy performance. The distributed nature of the relation
representations acquired from the Leuven inputs posed a strong test of
BART’s algorithm for importance-guided mapping. Although this
algorithm was extremely successful when applied to localist repre-
sentations derived from the rating data, it was far from obvious
whether it would also be effective with distributed representations.
We tested BART and the baseline model on the five types of analogy
problems in the same manner as for the rating inputs. The results are
shown in Figure 11. The overall level of performance is lower than
was obtained when the models were trained with ratings inputs, which
is not surprising given the much greater complexity of the Leuven
inputs. Indeed, it was far from obvious that the algorithm for
importance-guided mapping would work at all when applied to rep-
resentations of first-order relations that are highly distributed over
many dimensions, rather than being localized on one critical dimen-
sion (as was the case for the simulations based on rating vectors; see
Figure 4). As indicated in Figure 10, the first-order relations acquired
from the Leuven vectors generally involved at least 40 reliable pre-
dictor variables working together.

In fact, the performance of the BART model on the analogy
tests was excellent, achieving essentially perfect accuracy after
100 training trials on four problem types, and about 90% on
Opp–C problems. For the Same–O, Same–OE, and Opp–R
analogy types, the baseline model does not catch up to BART
until after 40 training pairs. For the Opp–S and Opp–C analogy
types, performance of the baseline model hovers around chance
(50% and 0%, respectively) even after 100 training trials. For
the latter problem types, we explored the impact of more
extended training on analogy performance for the baseline

Figure 9. Log of the ratio between predicted posterior probability of each
positive test pair instantiating a “greater” relation and that of the reversed
pair instantiating the relation on generalization test (Leuven inputs) as a
function of rated distance on the relevant continuum. Distance bins are
based on Holyoak and Mah’s (1981) norms: Bin 1 (distances between 0.5
and 1.5), Bin 2 (distances 1.5–3), Bin 3 (distances 3–5.5), and Bin 4
(distances 5.5–10). Results are collapsed over the four continua.

633RELATION LEARNING



Figure 10. Illustration of mean weights for four relations learned from 100 training examples with Leuven
inputs. For each relation, the weights on 50 dimensions (based on the specified query) are rank-ordered by
importance. The intensity of cells represent weight values on each dimension (light indicates high positive
values, dark indicates high negative values). The first column corresponds to weights on features of the first
object, and the second column corresponds to weights on features of the second object.
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model. Even after 700 training examples, the baseline model
still lagged behind BART by about 9 percentage points on
Opp–S problems and 46 percentage points on Opp–C problems.
In sum, when faced with high-dimensional inputs based on
Leuven inputs, BART was able to achieve substantial success in
solving structured analogy problems, with its informative priors
playing a decisive role.

Tests of BART Using Topics Vectors

Inputs. We also applied BART to the yet more challenging
problem of learning comparative relations from input representa-
tions taken from the topics model (Griffiths et al., 2007). Whereas
the ratings vectors has clear localist codes for the critical continua
(size, fierceness, etc.), and the Leuven vectors included some

Figure 10 (continued).
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features that were transparently related to them, the more opaque
topics vectors did not provide any dimensions that were transpar-
ently relevant for learning comparative relations. To make the
results as comparable as possible to those obtained in the previous
simulations, we used the same set of 77 animal names taken from
the Holyoak and Mah (1981) norms that were used in the simu-
lations based on rating inputs.

The topics representations we used for these words were derived
from the output of the topics model based on the tasaALL data base

(see Griffiths et al., 2007). This output consists of 24 samples with
300 topics each for 26,243 unique words. Each sample consists of a
word-by-topic matrix, in which the entry in the ith row and jth column
is the number of times that the ith word appeared in the corpus and
was assigned to the jth topic. We performed several preprocessing
operations to create the vectors used as the immediate inputs to
BART. First, we added a smoothing parameter of 0.01 to each entry
in the matrix. We then derived a feature vector for each word, in
which each feature value corresponds to the conditional probability of

Figure 11. Proportion of analogical responses as a function of the number of training examples (log scale) with
Leuven inputs for the five types of analogy problems. Solid lines present results for Bayesian analogy with
relational transformations (BART) with empirical prior and hyperprior; dashed lines present results for baseline
model (uninformative prior). Error bars indicate 1 standard deviation (results based on 10 runs). Same–O �
same–extreme (opposite as foil); Same–OE � same–extreme (opposite–extreme as foil); Opp–S � opposite
(split pair as foil); Opp–R � opposite (reversed as foil); Opp–C � opposite (conflict as foil).
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a corresponding topic given that word. This value is simply the joint
frequency of the topic and word (an entry in the matrix) divided by the
frequency of that word (the sum of a row in the matrix). Although the
frequencies of specific words for each topic vary somewhat across
the 24 samples, it was clear from inspection that the same 300 topics
appeared in the same order across all 24 samples, indicating that the
topics solutions are robust. Accordingly, a single feature vector for
each word was calculated simply by averaging its feature vectors
across all samples. We multiplied the computed probability by 100 to
make the magnitude range roughly comparable to that of the rating
inputs.

If all 300 dimensions of each word vector were used, each word
pair vector would have 600 dimensions. However, for any individual
word, most feature values are close to 0 (reflecting the fact that most
of the 300 topics are irrelevant for any particular word). Dimensions
that yield feature values at or near 0 for all words of interest (the
animal names) will be useless in subsequent relation learning, and are
likely to introduce noise that will impede any learning algorithm given
the sheer size of the search space and limited number of training
examples. To focus on the most important dimensions (those for
which animals names tend to have nonzero probabilities), we summed
the feature vectors for all 77 animals and identified the 50 dimensions
that yielded the largest sums. By using just these 50 most important
topics dimensions to form vectors for each individual word, the total
size of the vector for each word pair was reduced to 100 (the same
dimensionality as for the Leuven vectors).

Because the feature values as described so far are based on
probabilities, they are necessarily nonnegative. Accordingly, we
subtracted from each feature the mean value of that feature across
all 26,243 word vectors. The feature values in the vectors used as
inputs to BART therefore included both negative and positive
values, with means near 0.

Training. The basic training regimen was identical to that
employed with the Leuven vectors (except all learning was based
solely on animals from the Holyoak & Mah, 1981, norms). The
same hyperprior parameters were used. (Hyperpriors improved
generalization performance by about 3 percentage points overall,
with more significant improvement for certain analogy tests.) For
comparison, we again tested the same baseline model as that used
with both rating and Leuven inputs (i.e., Bayesian logistic regres-
sion with standard normal distributions as uninformative priors).

Generalization performance.
Basic tests. All reported results are based on the average

performance over 10 runs, each of which randomly selected a set
of training pairs from the pool. Figure 12 depicts BART’s gener-
alization curves for the four “greater” relations as a function of the
number of training examples. Not surprisingly, given the vastly
greater opacity of topics representations, the level of performance
was considerably lower overall than was obtained with the rating
or Leuven vectors. However, the full BART model, with empirical
priors on mean weights and a hyperprior on variances, achieved
substantial generalization (about 70%–80% accuracy for the four
“greater” relations after 100 training examples). These results
indicate that even when magnitude information is not coded in any
clear way in the inputs, BART can learn useful representations of
comparative relations from positive examples. The baseline model
showed much weaker generalization performance, starting at
chance (50%) and peaking at a mean of 67% accuracy after about
80 training examples.

We also explored how BART’s generalization performance
changed with more extended training. Whereas BART appeared to
be unbiased when trained with up to 80–90 examples, a further
increase in the number of training examples led to a bias toward
“yes” responses. This type of response bias leads to reduced
accuracy if a fixed decision criterion is used. (Note the slight
decline in accuracy apparent in Figure 12 after 70 training exam-
ples, especially for the baseline model.) Generalization perfor-
mance as measured by Az continued to improve slightly with
increased numbers of training examples. But even after 2,000
training examples, overall generalization performance as measured
by Az was higher for BART (.87) than for the baseline model (.82).

To examine whether the relational representations that BART
derives from topics vectors yield the distance effect obtained for
comparative judgments by humans, we again examined how
BART’s generalization performance relates to the rated subjective
distance between each test pair of animals on the dimension of
interest (as measured with the Holyoak & Mah, 1981, norms).
Figure 13 plots the mean log ratio of predicted probabilities for
positive versus negative test pairs as a function of distance on the
relevant dimension between the two animals in a pair (after learn-
ing from 100 training examples), using the same distance bins as
were used to test the model with rating vectors. The log ratio again
increased monotonically with distance. Thus, the relational repre-
sentations that BART acquired from topics inputs clearly yield a
symbolic distance effect.

Generalization beyond the range of training examples. As in
the case of the simulations based on ratings and Leuven vectors,
we performed a series of computational experiments to determine
whether BART is capable of generalizing to new types of pairs that
in various ways go beyond the range of the training examples.

1. Training with 100 examples from distance Bins 1–3 only and
testing on all five distance bins. We obtained a monotonic
increase in mean log ratio across all levels of distance: 0.78, 2.05,

Figure 12. Accuracy in the generalization task with topics vectors as a
function of the number of training examples for the four comparative
relations. Solid lines indicate the performance of Bayesian analogy with
relational transformations (BART) with the empirical prior and hyperprior;
dashed lines indicate the performance of a baseline model (Bayesian
logistic regression model with uninformative prior).
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2.86, 3.29, and 3.61 for Bins 1–5, respectively, extending the
similar pattern obtained with ratings and Leuven inputs.

2. Training with 100 pairs of the form [4, 1] and testing on all
pairs of the form [3, 2]. BART’s accuracy levels were 75%,
45%, 54%, and 44% for larger, fiercer, smarter, and faster,
respectively.

3. Standard training with 100 pairs formed from all groups and
testing on all pairs of the form [3, 2]. BART’s accuracy levels
were 87%, 54%, 56%, and 54% for larger, fiercer, smarter, and
faster, respectively. Thus for topics inputs, Tests 2 and 3 indicate
that generalization performance was weak for close midrange
pairs, especially when the range of the training pairs was restricted
to those of the form [4, 1] (Test 2).

4. Training with 100 pairs of the form [2, 1] and testing on all
pairs of the form [4, 3], or the reverse. Averaged across the two
variations, generalization accuracy was 49%, 61%, 63%, and 62%
respectively for larger, fiercer, smarter, and faster, indicating
modest performance for the latter three relations.

5. No overlap between training and test animals with 100
training examples. BART achieved accuracies of 71%, 65%,
68%, and 63% for larger, fiercer, smarter, and faster, respectively,
indicating moderately successful generalization to animals not
encountered during training.

Content of learned weight distributions. We examined
representative solutions that BART generated in learning repre-
sentations for the comparative relations based on topics inputs.
These solutions were even more distributed than those obtained
with Leuven inputs (see Figure 10), with around 30 dimensions
(i.e., about 60 weights) distinguishing the two roles for each
comparative. The two roles were generally contrastive (i.e.,
weights associated with the two roles took on opposite signs).
However, unlike those based on ratings and Leuven vectors, the
topics solutions did not clearly distinguish the “greater” and

“lesser” poles of individual continua. That is, rather than having
predominantly high positive weights on the first role and high
negative weights on the second, the pattern of weight polarity was
more mixed. As we will show, the lack of a clear distinction
between “greater” comparatives (larger, fiercer, etc.) and “lesser”
ones (smaller, meeker, etc.) had negative consequences for
BART’s ability to solve some specific types of analogy problems
based on topics inputs.

In addition to being more highly distributed, the topics solutions
proved to be much more opaque than the Leuven solutions. Indeed,
the term topic (which suggests an overall semantic theme) seems
like a misnomer when applied to the feature dimensions that
loaded highly for the various continua. Rather than having a clear
semantic interpretation, each topic can really only be characterized
by the list of words associated with it. For example, the topic most
strongly predictive that the first object was larger than the second
was highly associated with words for body parts (e.g., blood, body,
heart, cells). Of course, this is only one of about 30 topics that
collectively drove the decision as to which animal is larger. Thus
BART was able to learn and generalize representations of com-
paratives from topics inputs with moderate success, even though
the underlying features were subsymbolic.

Analogy performance. Given that the topics representations
for comparatives were highly distributed and semantically opaque,
it is not surprising that using them to solve higher order analogy
problems proved to be challenging. We tested BART and the
baseline model on the five types of analogy problems in the same
manner as for the ratings and Leuven inputs. The results for up to
300 training examples are shown in Figure 14. The overall level of
performance is lower than was obtained when the models were
trained with ratings or Leuven inputs. Nonetheless, performance of
the BART model on the analogy tests after learning from topics
inputs was quite good. After 300 training examples, the perfor-
mance level of BART was essentially perfect for Same–O prob-
lems, at about 90% accuracy for Opp–S problems, and 80% for
Opp–C problems. BART performed less well on the Opp–R prob-
lems (about 70%) and the Same–OE problems (about 60%).

BART’s lower performance on the latter two types of problems
reflects that fact that in each case the correct answer can only be
discriminated from the foil on the basis of polarity. Thus in the
Same–OE type, the foil is a pair of relations at the opposite pole
from the A:B pair, and in the Opp–R type the foil has the polarity
reversed relative to A:B (e.g., if larger:smaller is the A:B term and
fiercer:meeker is the correct C:D choice, the foil might be meeker:
fiercer). As discussed earlier, for any pair of polar opposites
BART implicitly identifies the “greater” relation as that for which
the first role has predominantly positive weights on the relevant
dimensions, whereas the “lesser” relation is that for which the first
role has predominantly negative weights. As noted above, the
topics inputs were much less clear than the rating or Leuven inputs,
providing a mix of dimensions that were positively and negatively
weighted as indicants of, for example, larger and smaller. In other
words, topics inputs did not clearly establish “which end is up” for
the various continua, making it difficult for BART to use polarity
information as its sole basis for selecting an analogical completion.

Somewhat paradoxically, the baseline model actually was more
accurate than BART for the problem types where polarity infor-
mation was critical (Same–OE and Opp–R). The reason is that the
baseline model (without empirical priors or hyperpriors) estimated

Figure 13. Log of the ratio between predicted posterior probability of
each positive test pair instantiating a “greater” relation and that of the
reversed pair instantiating the relation on generalization test (topics inputs)
as a function of rated distance on the relevant continuum. Distance bins are
based on Holyoak and Mah’s (1981) norms (see Figure 6). Results are
collapsed over the four continua.
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higher variances on weights, which increased sensitivity to the
small difference between the same-pole correct choice and the
opposite-pole foil. Intuitively, BART “knew too much,” viewing,
for example, a pair like meeker–fiercer as a competitive foil to
fiercer–meeker when seeking a match to larger–smaller, since all
these pairs instantiate contrasting relations. By contrast, the base-
line model could detect no apparent relationship between meeker–
fiercer and larger–smaller, so was more likely to favor the correct
option as the analogical completion.

More broadly, however, the performance of the baseline model
across the entire set of analogy tests was dismal (see Figure 14). As
was the case for the Leuven inputs, the baseline model failed
completely on the Opp–S problem type (near chance level of 50%)
and the Opp–C type (near chance level of 0%). Even after 2,000
examples, performance of the baseline model lagged 33 percentage
points behind BART on Opp–S problems and 90 percentage points
on Opp–C problems. Thus even though the baseline model
achieved modest success in relational generalization with both

Figure 14. Proportion of analogical responses as a function of the number of training examples with topics
input for five types of analogy problems. Solid lines present results for Bayesian analogy with relational
transformations (BART) with empirical prior and hyperprior; dashed lines present results for baseline model
(uninformative prior). Error bars indicate 1 standard deviation (results based on 10 runs). Same–O � same–
extreme (opposite as foil); Same–OE � same–extreme (opposite–extreme as foil); Opp–S � opposite (split pair
as foil); Opp–R � opposite (reversed as foil); Opp–C � opposite (conflict as foil).
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Leuven and topics inputs, it was unable to use its learned repre-
sentations to reliably solve higher order analogy problems.

It may seem surprising that priors continued to play a critical
role in analogy performance even after 2,000 trials, as the general
rule for Bayesian models is that priors are eventually swamped by
data. However, the fact that learning in our simulations was based
solely on positive examples may have made priors especially
potent. Although the model was expected to learn a specific
comparative relation, such as larger, a finite set of positive exam-
ples is likely to be consistent with multiple possible relations (e.g.,
both animals, both physical objects). The contrastive priors pro-
vided BART with a strong push in the direction of comparative
relations, whereas the baseline model, with its uninformative pri-
ors, might sometimes have acquired weights consistent with other
possible relations exhibited by the positive training examples.
Consequently, the patterns of weight distributions acquired by the
baseline model likely were more variable from one comparative to
another, impairing its performance on higher order analogy prob-
lems.

General Discussion

Summary

The work described in this article addresses the issue of whether
and how relational representations that can support structured
reasoning may be learnable from nonrelational inputs. Using com-
parative relations as a model domain, we performed a series of
computational experiments based on BART, a Bayesian model of
relation learning and analogical inference. To relate our findings to
the general manner in which children appear to acquire concepts,
we focused on learning from labeled positive examples of each
target relation. BART incorporates a key representational assump-
tion: A relation is represented by a weight distribution that serves
to assess the probability that a pair of objects exemplifies it. BART
proceeds in two basic stages. First, guided by empirical priors on
mean weights and hyperprior on variances, the model uses Bayes-
ian inference to update its weight distribution based on training
examples. Second, the model uses importance-guided mapping to
transform its learned weight distributions and then calculate the
distance between pairs of relations, thereby assessing the validity
of higher order analogies based on the implicit relations “both
same” (higher:fiercer::smarter:faster) and “opposite” (higher:
lower::fiercer:meeker).

When trained and tested with items based on small object
vectors derived from human ratings of subjective magnitudes,
BART achieved near-perfect accuracy both in generalizing to new
examples of relations and in assessing higher order analogies
based on its acquired relations. The high-dimensional and more
complex Leuven and topics vectors posed a far greater computa-
tional challenge, as no invariant features are apparent, and learning
depends on acquiring distributed representations over dozens of
feature dimensions. When Leuven vectors were used as inputs,
generalization accuracy was in the range of 90% accuracy after
100 training examples; with topics vectors, accuracy was in the
range of 70%–80%. Thus BART showed substantial generaliza-
tion ability after learning from the more complex inputs. More-
over, for all three types of inputs, BART was able to generalize to
a completely new set of animals than those used in training.

When tested on higher order analogy problems based on the
relations “same– extreme” and “opposite,” the algorithm for
importance-guided mapping yielded near-perfect performance via
BART’s learned relational representations, for both ratings and
Leuven inputs. BART’s analogy performance was also quite
strong for topics inputs (except that topics inputs did not provide
information that could clearly distinguish the “greater” versus
“lesser” pole of each magnitude continua). In contrast, a baseline
model with uninformative priors showed substantially weaker gen-
eralization and analogy performance for both Leuven and topics
vectors (even though it was provided with the identical algorithm
for importance-guided mapping).

For all three types of inputs, the relational representations
learned by BART provided a qualitative account of the symbolic
distance effect (Moyer, 1973). The degree of difficulty of making
relative judgments on a dimension (as indexed by the model’s
estimates of log posterior probability ratio for a target relation)
varied inversely with the magnitude difference between the two
items in a pair. In addition, BART demonstrated the capacity to
generalize outside the range of magnitude distances provided in
the training set. Even when trained on animal pairs exhibiting
small or medium size differences, the model was most confident
when generalizing to novel pairs exhibiting large size differences.
The model is thus consistent with evidence that people can distin-
guish “ideal” from “most typical” exemplars (Kittur, Hummel, &
Holyoak, 2006). BART in effect defines the ideal exemplar of a
larger relation as the pair with the largest size difference (e.g., “a
dinosaur is larger than a flea”), even though a pair like “a fox is
larger than a dove” would be more typical of the observed in-
stances (i.e., closer to their central tendency).

Overall, the simulations reported here thus show that BART was
able to pass five critical tests that can be posed for any model of
relation learning. We have shown that the model can (a) learn
first-order relations from complex nonrelational inputs that were
independently generated; (b) learn with high efficiency; (c) gen-
eralize to classify novel relational examples; (d) capture a major
factor (symbolic distance) that affects difficulty of human com-
parative judgments; and (e) use its learned relational representa-
tions to solve higher order analogy problems. No previous model
of relation learning has met all these criteria.

Comparison With Previous Approaches

There have been many previous computational models of vari-
ous aspects of analogical reasoning, which have been classified as
symbolic, connectionist, and various hybrids (French, 2002; Gent-
ner & Forbus, 2011). BART’s capabilities appear painfully limited
when compared to those of the state-of-the-art analogy models. To
date, its most advanced accomplishment is to solve simple four-
term analogy problems, whereas other models can perform much
more complex feats involving analog retrieval, mapping, infer-
ence, and schema formation. Even in the restricted domain of
four-term analogy problems, BART cannot compete with state-of-
the-art machine-learning models (e.g., Turney, 2006).

However, BART is focusing on very different issues than those
addressed by most previous analogy models. It attempts to answer
the basic question, How might relational representations be cre-
ated? The operation of BART provides a well-specified computa-
tional model of the type of relational rerepresentation that seems to
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underlie the power of human thinking (Penn et al., 2008). More
generally, the model provides a concrete example of how new
representations can be acquired by forms of inductive bootstrap-
ping: first the use of empirical priors to jump-start relation learn-
ing, and then the use of importance-guided mapping to transform
and compare relational representations. BART illustrates the cen-
trality of analogical bootstrapping in learning relations (cf. Carey,
2011; Gentner, 2010).

The idea that functionally defined importance provides a key
pragmatic constraint on mapping has a long history (Holyoak,
1985), and BART exemplifies a very basic mechanism by which
importance can be defined quantitatively and used to place non-
identical dimensions into correspondence. Unlike previous com-
putational models of mapping, BART finds mappings between
features at a subsymbolic level (identifying systematic correspon-
dences between distributed patterns in a high-dimensional weight
space), rather than between explicit predicates. Subsymbolic map-
ping processes of this sort may underlie various types of implicit
analogical transfer (e.g., Day & Goldstone, 2011).

The present findings provide a proof-of-concept that, for the
domain of comparative relations, a capacity for structured rela-
tional reasoning can potentially emerge from bottom-up learning
based on unstructured inputs. Particularly, in the case of the topics
vectors, the inputs were created without any human guidance that
might have tailored them to the relational learning task. If we
consider the operation of the topics model itself (Griffiths et al.,
2007) in conjunction with BART, the representations that the latter
model used to assess structured analogy problems can be traced
back to the raw statistics of covariation among words in texts. The
to-be-learned relations did not correspond to any specific dimen-
sions created by the topics model. In broad strokes, we have shown
that BART can solve structured analogy problems, albeit simple
ones, using relational representations the model learned itself from
unstructured inputs that were independently generated. No previ-
ous model of analogy has demonstrated a comparable capability,
which arguably is the essential precursor to a satisfying account of
complex human analogical reasoning.

The most appropriate comparisons for BART are with previous
models of relation learning. As a discriminative Bayesian model,
BART is most directly related to the model developed by Silva,
Airoldi, and Heller (2007; Silva, Heller, & Ghahramani, 2007; see
also D. Chen et al., 2010). Like the model of Silva and colleagues,
BART uses empirical priors to bootstrap relation learning; how-
ever, in BART the empirical priors are relation specific, and can be
used together with a hyperprior on variances. BART is able to use
training examples to automatically select the one-place predicate
best suited for generation of priors on mean weights for a new
comparative relation. The algorithm for importance-guided map-
ping is a key innovation that enables BART to move beyond
relational generalization to the more challenging task of solving
higher order analogy problems based on its learned representa-
tions.

It is instructive to relate the core concepts and mechanisms
instantiated in BART to those that underlie other approaches to
relation learning. We will focus on three central aspects of the
BART model. These are (a) exploiting empirical priors, (b) rep-
resenting relations as weight distributions, and (c) allowing role-
dependent operations on representations. With these in mind, we

can draw comparisons and contrasts with three general approaches
reviewed earlier.

Comparison to hierarchical generative models. If we take
the structure-learning model of Kemp and Tenenbaum (2008) as
an example, the generative approach is broadly similar to BART in
the use of statistical learning over distributions. The two ap-
proaches also converge in denying that explicit representations of
relations could be acquired by a complete tabula rasa. However,
the models make different assumptions about what knowledge or
capacities the learner brings to the task. Kemp and Tenenbaum’s
model is endowed with a grammar that can generate candidate
structures over which statistical learning can be applied. BART
does not come equipped with a comparable grammar of relations.
Rather, it comes with a suite of operations that it can use to create
and transform representations (in particular, the ability to select
and use empirical priors to initialize the representation of a to-be-
learned relation, and the ability to perform importance-guided
mapping and subsequent relational transformations).

The generative and discriminative approaches to learning rela-
tions may well prove to be complementary. An important question
for future research is whether a relational representation of the type
acquired by BART might be transformed into a generative model,
a step likely to be necessary in order to achieve the full range of
human-like relational capabilities.

Comparison to neural network models. Both generative
and discriminative Bayesian models are similar to neural network
models in their emphasis on statistical learning as a major con-
tributor to the acquisition of knowledge. Discriminative models
such as BART are perhaps somewhat closer to the spirit of neural
network models, emphasizing the emergence of knowledge from
bottom-up processing of data provided by the environment. How-
ever, the weight distributions over feature vectors that BART uses
to code relations capture more information than do the represen-
tations created by typical neural network models. Weight distri-
butions code not only first-order statistics (means) but also second-
order statistics (variances and covariances) that capture uncertainty
about weights and interweight correlations (a property shared by
“deep learning nets”; Salakhutdinov & Hinton, 2009).

Yet, paradoxically, BART’s relational representations are also
explicit and structured in ways that representations in a distributed
neural network are not. Most basically, BART’s weight distribu-
tions respect the integrity of distinct roles (e.g., the roles of the
larger versus smaller member of a pair of objects). The internal
structure of relations in BART is presumably inherited from the
output of the perceptual system, which codes objects as individu-
als. A relation such as larger is learned from pairs of objects, and
hence is structured as a pair of roles. In contrast to the model of
Rogers and McClelland (2008), for example, an individual relation
in BART has a distinct identity (e.g., the weight distribution for
larger is different from that for fiercer, and also from the com-
plementary relation smaller). Because relational representations in
BART are isolable from one another, they can be compared and
systematically transformed. The properties of the weight distribu-
tions employed by BART are thus qualitatively and quantitatively
different from those of the weight matrices used in classical neural
networks.

Comparison to symbolic connectionist models. Among the
algorithmic models of relation learning, BART has most in com-
mon with the class of symbolic connectionist models, such as
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LISA (Hummel & Holyoak, 1997, 2003) and DORA (Doumas et
al., 2008; see also Halford et al., 1998). These models, like BART,
assume that relational representations are structured in terms of
roles, thereby escaping the fundamental limitations of conven-
tional neural network models. Another important similarity is that
BART, like DORA, exploits the potential for bootstrapping from
initial learning of one-place predicates to learning comparative
relations.

In general terms, both DORA and BART aim to learn relations
using bottom-up mechanisms based on detection of covariation
among the objects that fill relational roles. DORA emphasizes
learning from unlabeled examples, whereas BART focuses on
learning from labeled examples (either positive or negative, al-
though the former are assumed to be more common in child
language acquisition). DORA, extending earlier proposals con-
cerning schema induction (Gick & Holyoak, 1983), learns rela-
tions by taking the intersection of the feature representations of
multiple examples. In comparison to a regression algorithm of the
sort used by BART, the logical intersection operator appears to be
too strict (a single exception may cause a feature to be dropped
from the representation of a relation). The method is ill-suited for
learning concepts defined by distributed representations over fea-
tures that are only probabilistically predictive, as was the case for
Leuven and topics vectors. By using Bayesian inference, BART is
able to learn probabilistic representations of relations from positive
examples, without requiring any strictly invariant features, while
simultaneously factoring in the influence of prior knowledge. As
noted earlier, DORA has only been tested on hand-coded inputs
that include invariant features over which to-be-learned relations
can be defined. DORA (like LISA) is not designed to map non-
identical features to one another, as the mapping algorithm is
restricted to mapping predicates, rather than object features.

Most basically, BART’s representational scheme for relations
distinguishes it from symbolic as well as nonsymbolic connection-
ist models. In both varieties of neural network models, relations
and objects have generally been represented in a common format
(as distributed sets of units interconnected by weighted associa-
tions). In symbolic-connectionist models, which focus on explicit
relational representations, both relations and objects have been
represented in terms of units for semantic features: either separate
pools of feature units for the two types of entities (LISA; Hummel
& Holyoak, 1997, 2003; see also Halford et al., 1998) or a single
pool (Doumas et al., 2008). BART introduces a very different
representational assumption. Whereas objects are represented by a
vector of features, first-order relations are represented as weight
distributions. In BART, relations (weight distributions) and objects
(feature vectors) constitute distinct but connected representational
elements. This representational distinction is critical for BART’s
ability to acquire relational representations by statistical learning.

BART’s representational assumptions may suggest an important
way in which algorithmic symbolic-connectionist models can be
refined. The use of temporal synchrony for role binding gives rise
to inherent capacity limits, related to the number of distinct tem-
poral phases that can be interleaved without significant overlap of
firing for each phase. Given established limits on neural firing
rates, this “relational bottleneck” has been estimated at four to six
distinct phases (Cowan, 2001; Hummel & Holyoak, 1997). If role
bindings are coded by synchronizing the neural code for a role and
its filler, as the LISA model assumes, then this limit translates

directly into four to six concurrently active role bindings, or two to
three complete propositions, a number that appears plausible for
adult humans. But as noted earlier, models that use temporal firing
patterns as a dynamic code for role bindings in active memory can
only synchronize representations that can be kept distinct despite
firing together. LISA’s use of neural synchrony therefore depends
on defining separate pools of features for objects and relations.

In order to model the learning of features of relations from
features of objects, the DORA model (Doumas et al., 2008) as-
sumes instead that relations and objects are defined over a single
pool of semantic features and that role bindings are coded by
asynchrony of firing for a role and its filler. This shift in repre-
sentational assumptions means that DORA requires twice as many
distinct temporal phases as LISA to represent the same number of
role bindings. In effect, DORA’s estimate of the capacity of human
working memory is half the value predicted by LISA. Doumas et
al. (2008, pp. 30–31) suggest that asynchrony may be required
only for relation learning and not for relational inference. How-
ever, it is unclear how inferences could be made reliably if roles
and their fillers were coded on the same pool of features and yet
allowed to fire in synchrony (e.g., the distinction between “ele-
phants are big” and “elephants are gray” would seem to be lost).

BART’s assumption that relations (more generally, predicates)
and objects rely on distinct types of representations (weight dis-
tributions versus feature vectors) goes between the horns of this
dilemma, providing a potential basis for a LISA-like system of
binding by synchrony that nonetheless is capable of relation learn-
ing. That is, the dynamic form of coding a role binding might
involve the synchronous activation of a role (a distinct subset of
the weight distribution for a relation) and the feature vector for its
filler. The role (weight distribution) and its filler (feature vector)
would not be confusable even when synchronized, because each
would constitute a distinct representational type. An algorithmic
implementation based on BART’s form of relation representation
would thus yield the same estimate for the capacity of working
memory as does LISA.

Potential Extensions

Acquiring more detailed developmental data. For the pres-
ent project, we created a microworld in which a learner (the BART
model and variations on it) must learn several comparative rela-
tions defined over a set of animal concepts, using inputs consisting
of feature vectors, and then must draw higher order analogies
based on the acquired relational representations. In general terms,
we constrain the task in ways that seem consistent with compara-
ble relation learning by children (modest numbers of largely pos-
itive examples, acquiring one-place predicates prior to true rela-
tions). But we acknowledge that our microworld is not the one that
children actually encounter. Children do not learn larger and other
comparative relations from animals only, and we lack detailed
knowledge of the inputs children actually have available. At most,
realistic inputs resemble those that BART receives in that they are
also based (at least in part) on sets (likely quite large) of features
associated with individual objects.

Because of the idealized nature of our microworld, empirical
assessment of the models was largely qualitative (which is rather
counterintuitive, since BART generates detailed learning curves).
We hope that future tests of computational models of relation
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learning can be informed by more detailed empirical evidence
regarding the inputs children use to acquire relations, the trajectory
of children’s learning for specific relational concepts, and the
linkage between relational generalization and the ability to reason
by analogy.

Extensions to richer inputs. As we emphasized at the outset,
the representations that serve as inputs to children learning rela-
tions are undoubtedly richer than those we provided to BART in
the present set of simulations. Children learn from more direct
perceptual experience, including motoric feedback from their own
actions. For example, Maouene et al. (2008) showed that the age
of acquisition for basic English verbs (e.g., kiss, hug, kick) is
related to the nature of their association (for adults) with body
parts (e.g., the mouth versus the hands and arms). As another
example, work on action recognition has identified certain “signa-
ture movements,” such as a punch, that have a special status in
rapid identification of types of threatening actions (van Boxtel &
Lu, 2011, 2012). Such cues (in conjunction with adult speech) very
likely provide a significant part of the inputs available to children
as they learn verbs corresponding to basic actions. Realistic inputs
are likely to involve greater structure than the “flat” vectors used
in the present article, including various types of higher order
features (Regier, 1996; Regier & Carlson, 2001). Future research
should explore the use of learning algorithms that can create and
exploit hierarchical structure in their inputs.

Role of empirical priors in relation learning. The simula-
tions reported here demonstrate that representations of one-place
predicates can provide very useful empirical priors to facilitate
learning of the corresponding two-place relations. Knowledge
about a one-place predicate such as large can be learned from a set
of single objects (e.g., elephant), whereas learning the relation
larger requires joint processing of pairs of objects (e.g., elephant
and bear). On the basis of Halford’s (1993; Halford et al., 2010)
assumption that capacity increases over the course of cognitive and
neural development, and that attending to two objects requires
greater capacity than attending to one, it follows that children will
tend to learn one-place predicates prior to multiplace relations
(which have at least two roles), in accord with developmental
evidence (Smith, 1989).

However, this developmental pattern does not necessarily imply
that learning specific one-place predicates (e.g., large, small) is a
strict prerequisite for learning a related two-place predicate (e.g.,
larger). At least for ratings and Leuven vectors, the baseline model
with uninformative priors was able to learn comparative relations
and achieve substantial generalization performance when given an
adequate number of training examples. As long as we assume
sufficient working memory to hold two items, BART can proceed
to learn a two-place predicate directly, regardless of whether it has
already acquired corresponding one-place predicates. It is an open
empirical question whether children necessarily learn one-place
relative adjectives as a prerequisite to learning two-place compar-
ative adjectives (cf. Halford et al., 2010). More generally, how-
ever, many multiplace predicates (e.g., opposite) do not seem to
naturally decompose into simpler one-place predicates.

The further exploration of empirical priors will be especially
important in attempting to extend the current approach to other
types of relations besides comparatives (see Jurgens, Mohammad,
Turney & Holyoak, 2012). As the pool of potential empirical
priors grows larger and more varied, more sophisticated algorithms

for prior selection may prove useful. For example, prior selection
may involve a hierarchical process, winnowing options based on
general types of relations (e.g., varieties of sameness versus con-
trast).

It should be emphasized that the concept of empirical priors is
considerably more general than the idea of using one-place pred-
icates to guide learning of related two-place relations. Relation
learning can also potentially be bootstrapped by previously learned
relations (e.g., a perceptually based comparative such as larger
might facilitate subsequent acquisition of a more abstract compar-
ative such as smarter). Yet, more generally, the entire process of
analogical reasoning can be viewed as a sophisticated use of
empirical priors, in which the source analog is used to impose
priors to guide learning about the target (Holyoak, Lee, & Lu,
2010).

Learning higher order relations. Although the present ver-
sion of BART does not create explicit representations of higher
order relations such as opposite, it does appear to set the stage for
this possibility. In evaluating higher order analogies, the model is
implicitly sensitive to whether A:B and C:D both instantiate some
version of opposite. By assessing the distance between trans-
formed weight distributions, BART shows how representations of
different relations can be compared with one another. To create
explicit higher order representations, an extension of the model
could treat these transformed weight distributions in a manner
analogous to feature vectors, recursively applying its statistical
learning procedures to acquire higher order weights that capture
the commonalities between pairs of first-order relations such as
larger:smaller and fiercer:meeker (i.e., a representation of oppo-
site). In moving from first-order to higher order relations in this
manner, an extension of BART would in effect rerepresent first-
order relations as derived feature vectors, which can then serve as
inputs to a learning process that yields representations of higher
order relations. This basic move—treating learned weights as
derived features—provides a potential avenue to allow the devel-
opment of hierarchical relational systems. It also provides a pos-
sible answer to the inductive puzzle we raised at the outset: How
does the mind acquire concepts that cannot be defined in terms of
features bound to perception?

Toward an algorithmic model. Although we have devel-
oped BART as a computational-level model of how relations
might be learned and transformed to solve higher order analogy
problems, it should be possible to incorporate the basic ideas into
algorithmic models. As suggested above, the fact that BART
creates separate (but linked) representations for relations and their
fillers is compatible with synchrony-based models of the
symbolic-connectionist variety (Hummel & Holyoak, 1997, 2003).
More generally, it is useful to distinguish those aspects of BART
that depend on role-governed operations from those that do not.
Importantly, the inductive process that updates weight distribu-
tions based on training examples is not directly dependent on roles.
The feature vectors associated with the two objects being com-
pared are simply concatenated. BART’s weight distributions can
be viewed as a type of “attention weights” that reflect the impor-
tance of each dimension for accurate classification of relations.
Learning models based on the idea of attention weights have been
applied to object categorization and perceptual learning (Nosofsky,
1985; Petrov, Dosher, & Lu, 2005).
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BART would require a more complex learning algorithm to
acquire distributions of weights (rather than simply mean weights)
based on supervised learning (cf. Salakhutdinov & Hinton, 2009).
A psychologically realistic learning model would have to accom-
modate sequential training inputs. Although the version of BART
we have described operates on all training data at once, we have in
fact also implemented a variant that uses sequential updating. (In
general, regression models can operate in either batch or sequential
fashion.) The sequential version produces very similar results after
roughly 100 training examples. Thus, although a full model of
sequential learning would require additional theoretical work,
there is reason to be optimistic that such a model is possible (see
Lu, Rojas, Beckers, & Yuille, 2008, for a sequential model of
causal learning). For example, it is conceivable that the brain in
effect implements some kind of variational method based on tacit
assumptions about the form of neural distributions.

Although the core learning model (updating of weight distri-
butions) is not role governed, BART does operate on roles (a)
to establish empirical priors that guide acquisition of relations
and (b) to perform importance-guided mapping based on the
learned representations of relations. These operations depend
on the manipulation of structured knowledge, a capacity that is
arguably specific to humans (Penn et al., 2008). Interestingly,
neither of these operations appears to depend on the full cova-
riance matrix for weight distributions. Rather, the mean weights
(MAP estimates) may suffice (see Footnote 4). At a neural
level, it is more plausible that summary statistics such as MAP
estimates could be transmitted to downstream brain regions,
rather than the full covariation matrix. It seems plausible that
early neural areas are sensitive to intercorrelations among neu-
ral firing patterns, which encode covariance information
(Aertsen, Gerstein, Habib, & Palm, 1989; Cohen & Kohn, 2011;
Cohen & Maunsell, 2009; Kohn & Smith, 2005; Nirenberg &
Latham, 2003), whereas higher level areas instead respond to
broader temporal patterning, such as synchrony (Siegel, Don-
ner, & Engel, 2012; Uhlhaas & Singer, 2010).

The operations of BART can thus be viewed as demarcating
major points along an evolutionary continuum in relational pro-
cessing and representation. The basic capacity to code approximate
magnitudes so as to enable comparative judgments is common
across many species. Some primates, including the rhesus monkey,
have a limited ability to attach arbitrary symbols to small magni-
tudes (Diester & Nieder, 2007), and can also learn alternative
first-order relations defined over a common continuum (e.g., se-
lecting the larger or else the smaller of two numerosities in
response to a discriminative cue; Cantlon & Brannon, 2005).
Roughly, these species-general capabilities correspond to the mod-
est ability of our baseline model, starting with uninformative
priors, to learn weight distributions that support comparative judg-
ments, allowing generalization to novel pairs.

However, the capacity to learn weight distributions only sets the
stage for acquiring explicit relational representations. BART has
the additional capacity to treat weight distributions as structured
representations with multiple roles. These explicit representations
of first-order relations can then be made available to symbolic
processes capable of comparison and rudimentary analogical map-
ping, thereby enabling a variety of bootstrapping operations.
BART uses roles to guide selection of empirical priors, thereby
greatly increasing the efficiency of relation learning. After first-

order relations have been acquired, BART is able to make struc-
tured analogical inferences by mapping dimensions based on their
functional influence on relation discrimination, as opposed to their
literal identity. An extension of the model that treats weights as
derived features could potentially go on to discover the higher
order commonalities shared by first-order relations defined over
different dimensions, thereby acquiring explicit representations of
higher order relations such as opposite. These symbolic capabili-
ties, perhaps specific to humans, may depend on multiple subre-
gions of the prefrontal cortex (particularly the rostrolateral portion;
for a review, see Knowlton & Holyoak, 2009). The capacity for
role-governed operations may thus represent a late evolutionary
development that has allowed humans to attain their unique ca-
pacity for abstract thought.
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