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Abstract

We derive a Bayesian Ideal Observer (BIO) for detecting amotnd
solving the correspondence problem. We obtain Barlow aihihy’s
classic model as an approximation. Our psychophysical rexpats
show that the trends of human performance are similar to the&an
Ideal, but overall human performance is far worse. We ingatt ways
to degrade the Bayesian Ideal but show that even extremeadktipns
do not approach human performance. Instead we proposeuhstris
perform motion tasks using generic, general purpose, nmadehotion.
We perform more psychophysical experiments which are sterdiwith
humans using a Slow-and-Smooth model and which rule outtamat
tive model using Slowness.
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1 Introduction

Ideal Observers give fundamental limits for performingraltasks (somewhat similar to
Shannon’s limits on information transfer). They give bemeinks against which to evaluate
human performance. This enables us to determine objectivieat visual tasks humans
are good at, and may help point the way to underlying neunore@hanisms. For a recent
review, see [1].

In an influential paper, Barlow and Tripathy [2] tested thiiglof human subjects to detect
dots moving coherently in a background of random dots. Tleeived an “ideal observer”

model using techniques from Signal Detection theory [3]eyBhowed that their model
predicted the trends of the human performance as propeftiee stimuli changed, but that
humans performed far worse than their model. They arguddiggrading their model,

by lowering the spatial resolution, would give predictiargser to human performance.
Barlow and Tripathy’s model has generated considerabdedst, see [4,5,6,7].

We formulate this motion problem in terms of Bayesian Decist heory and derive a
Bayesian Ideal Observer (BIO) model. We describe why Badod/ Tripathy’s (BT) model
is not fully ideal, show that it can be obtained as an appratiom to the BIO, and deter-
mine conditions under which it is a good approximation. Weqren psychophysical ex-
periments under a range of conditions and show that thegrefftiman subjects are more



similar to those of the BIO. We investigate whether degradie Bayesian Ideal enables
us to reach human performance, and conclude that it doesvitbb(it implausibly large
deformations). We comment that Barlow and Tripathy’s ddgtian model is implausible
due to the nature of the approximations used.

Instead we show that a generic motion detection model whéds @ slow-and-smooth
assumption about the motion field [8,9] gives similar parfance to human subjects under
a range of experimental conditions. A simpler approachgiaislowness assumption alone
does not match new experimental data that we present. Wéudkenthat human observers
are not ideal, in the sense that they do not perform infereisagg the model that the
experimenter has chosen to generate the data, but maydnstea general purpose model
perhaps adapted to the motion statistics of natural images.

2 BayesDecision Theory and I deal Observers

We now give the basic elements of Bayes Decision Theory. Tpeatidata isD and
we seek to estimate a binary stdié (e.g. coherent or incoherent motion, horizon-
tal motion to right or to left). We assume moddiD|W) and P(W). We define

a decision rulea(D) and a loss functionl.(a(l), W) = 1 — dy4py,w. The risk is
R(a) =3 p w L(a(D), W)P(D|W)P(W).

Optimal performance is given by the Bayes rule: = arg min R(«). The fundamental
limits are given by Bayes RiskkR* = R(a*). Bayes risk is the best performance that can
be achieved. It corresponds to ideal performance.

Barlow and Tripathy’s (BT) model does not achieve Bayes. righis is because they used
simplification to derive it using concepts from Signal D¢t theory (SDT). SDT is es-
sentially the application of Bayes Decision Theory to thektaf signal detection but, for
historical reasons, SDT restricts itself to a limited clasgrobability models and is unable
to capture the complexity of the motion problem.

3 Experimental Setup and Correspondence Noise

We now give the details of Barlow and Tripathy’s stimuli, theodel, and their experi-
ments. The stimuli consist of two image frames wiftdots in each frame. The dots in the
first frame are at random positions. For coherent stimud,fggure (1), a proportiog’ N

of dots move coherently left or right horizontally with a ftkeranslation motion with dis-
placemenf. The remainingV (1 — C) dots in the second frame are generated at random.
For incoherent stimuli, the dots in both frames are gendratteandom.

Estimating motion for these stimuli requires solving therespondence problem to match
dots between frames. For coherent motion, the noise dogsaotrespondence noise and
make the matching harder, see the rightmost panel in figyre (1

Barlow and Tripathy perform two types of binary forced cleoéxperiments. ldetection
experiments, the task is to determine whether the stimuli is coheremooherent motion.
For discrimination experiments, the goal is to determine if the motion is to the right or the
left.

The experiments are performed by adjusting the fraafiaf coherently moving dots until
the human subject’s performance is at threshold (i.e. 7B6emercorrect). Barlow and
Tripathy’s (BT) model gives the proportion of dots at threlshto beCy = 1//Q — N
whereQ is the size of the image lattice. This is approximately/Q (becauseV << Q)
and so is independent of the density of dots. Barlow and fijpeompare the thresholds of
the human subjects with those of their model for a range oéewpental conditions which
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Figure 1: The left three panels show coherent stimuli Wite= 20,C' = 0.1, N = 20,C =
0.5 andN = 20,C = 1.0 respectively. The closed and open circles denote dots ifirtte
and second frame respectively. The arrows show the motitirosé dots which are moving
coherently. Correspondence noise is illustrated by thadat panel showing that a dot in
the first frame has many candidate matches in the second.frame

we will discuss in later sections.

4 TheBayesian |deal Model

We now compute the Bayes rule and Bayes risk by taking intowrtteexactly how the data
is generated. We denote the dot positions in the first anchskftame byD ={x;:i=
1,....N}{y. : a =1,..., N}. We define correspondence variablgs : Vi, = 1if z; —

Ya, Via =0 otherwise

The generative model for the data is given by:

P(D|Coh,T) = % P({ya}H{w:i}, {Via}, T)P({Via}) P({:}) coherent,
Via
P(D|Incoh) = P({y.})P({z;}), incoherent. (1)

The prior distributions for the dot positio3({x;}), P({y.}) allow all configurations of

the dots to be equally likely. They are therefore of foRtt{z;}) = P({y.}) = %

where(@ is the number of lattice points. The modB({y,}{z:}, {Vi.},T) for coher-

ent motion isP({ya}[{z:}, {Via}, T) = 15500 CA]’@'), L., (8y..247) 7. We set the priors

P({Vi,} to be the uniform distribution. There is a constrain, Vi, = C'N (since only
CN dots move coherently).

This gives:
Q- N)(Q—N)!
P(D|Incoh) = ( ol ) ( ol ),
N —-CN)! (N - CN
P(D|Coh,T) = {( i ) w 2(CN)! ZH Yot To) .
These can be simplified further by observing thaf. [[;, (6ymxi+T)V” = (\I,+I'),M,

whereV is the total number of matches —i.e. the number of dots in teeffame that have
a corresponding dot at displaceméhtn the second frame (this includes “fake” matches
due to change alignment of noise dots in the two frames).

The Bayes rule for performing the tasks are given by testiedag-likelihood ratios: (i)

P(D|Incoh) P(D|Coh,—T)
log F(DICoh.T) for detection (i.e. coherent versus incoherent), anddg)ip (DICobT) for

discrimination (i.e. motion to right or to left). For detemt, the log-likelihood ratio is a



function of ¥. For discrimination, the log-likelihood ratio is a funati@f the number of
matches to the righ¥,. and to the leftl;. It is straightforward to calculate the Bayes risk
and determine coherence thresholds.

We can rederive Barlow and Tripathy’s model as an approxandb the Bayesian Ideal.
They make two approximations: (i) they model the distribntdf» as Binomial, (i) they
used’. Both approximations are very good near threshold, exagprhall N. The use of
d' can be justified ifP(¥|Coh, T') and P(¥|Incoh) are Gaussians with similar variance.
This is true for largeV = 1000 and a range of' but not so good for smalV = 100, see
figure (2).
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Figure 2: We plotP(¥|Coh,T") and P(¥|Incoh), shown asP(¥|C') and P(¥|N) re-
spectively, for a range a¥ andC'. One of Barlow and Tripathy’s two approximations are
justified if the distributions are Gaussian with the sameéavere. This is true for larg&/
(left two panels) but fails for smalV (right two panels). Note that human thresholds are
roughly 30 times higher than for BIO (the scales on grapHeidif

We computed the coherence threshold for the BIO and the BTetador NV = 100to N =
1000, see the second and fourth panels in figure (3). As descrimdidrethe BT threshold

is approximately independent of the numbéiof dots. Our computations showed that the
BIO threshold is also roughly constant except for smalithis is not surprising in light of
figure (2). This motivated psychophysics experiments tereine how humans performed
for small N (this range of dots was not explored in Barlow and Tripatleyeriments).

All our data points are from 300 trials using QUEST, so erbans are so small that we do
not include them.

We performed the detection and discrimination tasks wahglation motiori” = 16 (as
in Barlow and Tripathy). For detection and discrimatiore tuman subject’s thresholds
showed similar trends to the thresholds for BIO and BT. Buhhno performance at small
N are more consistent with BIO, see figure (3).
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Figure 3: The left two panels show detection thresholds —drusabjects (far left) and BIO
and BT thresholds (left). The right two panels show disaniaion thresholds — human
subjects (right) and BIO and BT (far right).

But probably the most striking aspect of figure (3) is how fpypbumans perform compared
to the models. The thresholds for BIO are always higher thase for BT, but these
differences are almost negligible compared to the diffeeswith the human subjects. The
experiments also show that the human subject trends diffen the models at largd/.
But these are extreme conditions where there are dots onpuimds on the image lattice.



5 Degradating the ldeal Observer Models

We now degrade the Bayes Ideal model to see if we can obtaimhy@rformance. We
consider two mechanisms: (A) Humans do not know the preeise\of the motion transla-
tionT. (B) Humans have poor spatial uncertainty. We will also corelbpoth mechanisms.

For (A), we model lack of knowledge of the velocifyby summing over different motions.
We generate the stimuli as before fraR{D|Incoh) or P(D|Coh,T'), but we make the
>~ P(D|Coh, T)P(T)

P(DJIncoh) '

decision by thresholdindgog

For (B), we model lack of spatial resolution by replaci®i{y.}|{=:}, {Via},T) =
— ! — !

i i ViaGy vt Y P(ya i}, (Via}, T) = (55255 [ia Via fw (e s +1).

Here W is the width of a spatial window, so thaiy (a,b) = 1/W?2, if |a — b| <

W; fw(a,b) =0, otherwise.

Our calculations, see figure (4), show that neither (A) ngrr{Bt their combination are
sufficient to account for the poor performance of human sujelLack of knowledge
of the correct motion (and consequently summing over séweodels) does little to de-
grade performance. Decreasing spatial resolution doesdegerformance but even huge
degradations are insufficient to reach human levels. Badod Tripathy [2] argue that
they can degrade their model to reach human performancééutegradations are huge
and they occur in conditions (e.gf = 50 or N = 100) where their model is not a good
approximation to the true Bayesian Ideal Observer.
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Figure 4: Comparing the degraded models to human perforenaie use a log-log plot
because the differences between humans and model threshokty large.

6 Slowness and Slow-and-Smooth

We now consider an alternative explanation for why humafoperance differs so greatly
from the Bayesian Ideal Observer. Perhaps human subjeatetdose the ideal model
(which is only known to the designer of the experiments) aisteiad use a general purpose
motion model. We now consider two possible models: (i) a slesg model, and (ii) a slow
and smooth model.
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Figure 5: The coherence threshold as a functio&Vdbr different translation motion%'.
From left to right, human subject (HL), human subject (RKDNIN (shown forT" = 16
only), and 1DNN. In the two right panels we have drawn the agethuman performance
for comparision.



The slowness model is partly motivated by Ullman’s minimapping theory [10] and
partly by the design of practical computer vision trackirygtems. This model solves
the correspondence problem by simply matching a dot in tis¢ fiiame to the closest
dot in the second frame. We consider a 2D nearest neighbodelnfdDNN) and a 1D
nearest neighbour model (LDNN), for which the matching isst@ined to be in horizontal
directions only. After the motion has been calculated wequer a log-likelihood test

to solve the discrimination and detection tasks. This essmbk to calculate coherence
thresholds, see figure (5).

Both 1DNN and 2DNN predict that correspondence will be easyinall translation mo-

tions even when the number of dots is very large. This ma&atew class of experiments
where we vary the translation motion.
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Figure 6: The motion flows from Slow-and-Smooth fir = 100 as functions ofC' and
T. From left to right,C = 0.1,C = 0.2,C = 0.3,C = 0.5. From top to bottom,
T =4,T = 8,T = 16. The closed and open circles denote dots in the first and decon

frame respectively. The arrows indicate the motion flow 8jgztby the Slow-and-Smooth
model.

Our experiments show that 1DNN and 2DNN are poor fits to hunesfopmance. Human
performance thresholds are relatively insensitive to thelmer N of dots and the trans-
lation motionT’, see the two left panels in figure (5). By contrast, the 1DNN 2DNN
thresholds are either far lower than humans for smalbr far higher at largeV with a

transition that depends dn We conclude that the 1IDNN and 2DNN models do not match
human performance.

We now consider the Slow-and-Smooth model [8,9] which hanlshown to account for

a range of motion phenomena. We use a formulation [8] thatspasifically designed for
dealing with the correspondence problem.



This gives a model of fornP(V, v|{z;}, {y.}) = (1/Z)e=ZIV:*//Tm where

N N N
EV,v] = > > Via(ya — i — v(:))* + M| Lo|[> + ¢ Vi, )

=1 a=1 i=1

L is an operator that penalizes slow-and-smooth motion apdrdés on a paramtess see
Yuille and Grzywacz for details [8]. We impose the constraimat Zf\ia Vie = 1, Vi,
which enforces that each poifin the first frame is either unmatched,Vif, = 1, or is
matched to a point in the second frame.

We implemented this model using an EM algorithm to estimlagenhotion fieldv(z) that
maximizesP (v|{z:}, {va}) = >y P(V,v|{z:}, {y.}). The parameter settings &g, =
0.001, A = 0.5, ¢ = 0.01, 0 = 0.2236. (The size of the units of length are normalized by
the size of the image). The size@fletermines the spatial scale of the interaction between
dots [8]. This parameter settings estimate correct motittons in the condition that all
dots move coherently; = 1.0.

The following results, see figure (6), show that for 100 défs= 100) the results of the
slow-and-smooth model are similar to those of the humarestbjor a range of different
translation motions. Slow-and-Smooth starts giving cehee thresholds betweéh= 0.2
andC = 0.3 consistent with human performance. Lower thresholds @eduior slower
coherent translations in agreement with human performance
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Figure 7: The motion fields of Slow-and-Smooth fr= 16 as a function of: and V.
From left to right,C = 0.1,C = 0.2,C = 0.3,C = 0.5. From top to bottomN =
50, N = 100, N = 1000. Same conventions as for previous figure.

Slow-and-Smooth also gives thresholds similar to humafopaance when we alter the
numberN of dots, see figure (7). Once again, Slow-and-Smooth staitsggthe correct
horizontal motion between= 0.2 andc = 0.3.



7 Summary

We defined a Bayes Ideal Observer (BIO) for correspondenise mmd showed that Bar-
low and Tripathy’s (BT) model [2] can be obtained as an apjmnation. We performed

psychophysical experiments which showed that the trendsuofan performance were
more similar to those of BIO (when it differed from BT).

We attempted to account for human’s poor performance (cosadga BIO) by allowing for
degradations of the model such as poor spatial resolutidmacertainty about the precise
translation velocity. We concluded that these degraddtamhto be implausibly large to
account for the poorness of human performance. We notedB#rédw and Tripathy’'s
degradation model [2] takes them into a regime where thedtehis a bad approximation
to the BIO.

Instead, we investigated the possibility that human olesergerform these motion tasks
using generic probability models for motion possibly aéab the statistics of motion in
the natural world. Further psychophysical experimentsvgttbthat human performance
was inconsistent with a model than prefers slow motion. Buhan performance was
consistent with the Slow-and-Smooth model [8,9].

We conclude with two metapoints. Firstly, it is possible &sign ideal observer models for
complex stimuli using techniques from Bayes decision thedhere is no need to restrict
oneself to the traditional models described in classicaigatection books such as Green
and Swets [3]. Secondly, human performance at visual tasks b based ogeneric
models, such as Slow-and-Smooth, rather than the ideal modelaéoetperimental tasks
(known only to the experimenter).
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