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Abstract

We derive a Bayesian Ideal Observer (BIO) for detecting motion and
solving the correspondence problem. We obtain Barlow and Tripathy’s
classic model as an approximation. Our psychophysical experiments
show that the trends of human performance are similar to the Bayesian
Ideal, but overall human performance is far worse. We investigate ways
to degrade the Bayesian Ideal but show that even extreme degradations
do not approach human performance. Instead we propose that humans
perform motion tasks using generic, general purpose, models of motion.
We perform more psychophysical experiments which are consistent with
humans using a Slow-and-Smooth model and which rule out an alterna-
tive model using Slowness.

Submitted to NIPS 2005. Categories: Visual Processing

1 Introduction

Ideal Observers give fundamental limits for performing visual tasks (somewhat similar to
Shannon’s limits on information transfer). They give benchmarks against which to evaluate
human performance. This enables us to determine objectively what visual tasks humans
are good at, and may help point the way to underlying neuronalmechanisms. For a recent
review, see [1].

In an influential paper, Barlow and Tripathy [2] tested the ability of human subjects to detect
dots moving coherently in a background of random dots. They derived an “ideal observer”
model using techniques from Signal Detection theory [3]. They showed that their model
predicted the trends of the human performance as propertiesof the stimuli changed, but that
humans performed far worse than their model. They argued that degrading their model,
by lowering the spatial resolution, would give predictionscloser to human performance.
Barlow and Tripathy’s model has generated considerable interest, see [4,5,6,7].

We formulate this motion problem in terms of Bayesian Decision Theory and derive a
Bayesian Ideal Observer (BIO) model. We describe why Barlowand Tripathy’s (BT) model
is not fully ideal, show that it can be obtained as an approximation to the BIO, and deter-
mine conditions under which it is a good approximation. We perform psychophysical ex-
periments under a range of conditions and show that the trends of human subjects are more



similar to those of the BIO. We investigate whether degrading the Bayesian Ideal enables
us to reach human performance, and conclude that it does not (without implausibly large
deformations). We comment that Barlow and Tripathy’s degradation model is implausible
due to the nature of the approximations used.

Instead we show that a generic motion detection model which uses a slow-and-smooth
assumption about the motion field [8,9] gives similar performance to human subjects under
a range of experimental conditions. A simpler approach using a slowness assumption alone
does not match new experimental data that we present. We conclude that human observers
are not ideal, in the sense that they do not perform inferenceusing the model that the
experimenter has chosen to generate the data, but may instead use a general purpose model
perhaps adapted to the motion statistics of natural images.

2 Bayes Decision Theory and Ideal Observers

We now give the basic elements of Bayes Decision Theory. The input data isD and
we seek to estimate a binary stateW (e.g. coherent or incoherent motion, horizon-
tal motion to right or to left). We assume modelsP (D|W ) and P (W ). We define
a decision ruleα(D) and a loss functionL(α(I),W ) = 1 − δα(D),W . The risk is
R(α) =

∑
D,W L(α(D),W )P (D|W )P (W ).

Optimal performance is given by the Bayes rule:α∗ = arg minR(α). The fundamental
limits are given by Bayes Risk:R∗ = R(α∗). Bayes risk is the best performance that can
be achieved. It corresponds to ideal performance.

Barlow and Tripathy’s (BT) model does not achieve Bayes risk. This is because they used
simplification to derive it using concepts from Signal Detection theory (SDT). SDT is es-
sentially the application of Bayes Decision Theory to the task of signal detection but, for
historical reasons, SDT restricts itself to a limited classof probability models and is unable
to capture the complexity of the motion problem.

3 Experimental Setup and Correspondence Noise

We now give the details of Barlow and Tripathy’s stimuli, their model, and their experi-
ments. The stimuli consist of two image frames withN dots in each frame. The dots in the
first frame are at random positions. For coherent stimuli, see figure (1), a proportionCN
of dots move coherently left or right horizontally with a fixed translation motion with dis-
placementT . The remainingN(1 − C) dots in the second frame are generated at random.
For incoherent stimuli, the dots in both frames are generated at random.

Estimating motion for these stimuli requires solving the correspondence problem to match
dots between frames. For coherent motion, the noise dots actascorrespondence noise and
make the matching harder, see the rightmost panel in figure (1).

Barlow and Tripathy perform two types of binary forced choice experiments. Indetection
experiments, the task is to determine whether the stimuli is coherent or incoherent motion.
For discrimination experiments, the goal is to determine if the motion is to the right or the
left.

The experiments are performed by adjusting the fractionC of coherently moving dots until
the human subject’s performance is at threshold (i.e. 75 percent correct). Barlow and
Tripathy’s (BT) model gives the proportion of dots at threshold to beCθ = 1/

√
Q−N

whereQ is the size of the image lattice. This is approximately1/
√
Q (becauseN << Q)

and so is independent of the density of dots. Barlow and Tripathy compare the thresholds of
the human subjects with those of their model for a range of experimental conditions which



Figure 1: The left three panels show coherent stimuli withN = 20, C = 0.1,N = 20, C =
0.5 andN = 20, C = 1.0 respectively. The closed and open circles denote dots in thefirst
and second frame respectively. The arrows show the motion ofthose dots which are moving
coherently. Correspondence noise is illustrated by the farright panel showing that a dot in
the first frame has many candidate matches in the second frame.

we will discuss in later sections.

4 The Bayesian Ideal Model

We now compute the Bayes rule and Bayes risk by taking into account exactly how the data
is generated. We denote the dot positions in the first and second frame byD = {xi : i =
1, ..., N}, {ya : a = 1, ..., N}. We define correspondence variablesVia : Via = 1 if xi →
ya, Via = 0 otherwise.

The generative model for the data is given by:

P (D|Coh, T ) =
∑

Via

P ({ya}|{xi}, {Via}, T )P ({Via})P ({xi}) coherent,

P (D|Incoh) = P ({ya})P ({xi}), incoherent. (1)

The prior distributions for the dot positionsP ({xi}), P ({ya}) allow all configurations of
the dots to be equally likely. They are therefore of formP ({xi}) = P ({ya}) = (Q−N)!

Q!

whereQ is the number of lattice points. The modelP ({ya}|{xi}, {Via}, T ) for coher-
ent motion isP ({ya}|{xi}, {Via}, T ) = (Q−N)!

(Q−CN)!

∏
ia (δya,xi+T )Via . We set the priors

P ({Via} to be the uniform distribution. There is a constraint
∑

ia Via = CN (since only
CN dots move coherently).

This gives:

P (D|Incoh) =
(Q−N)!

Q!

(Q−N)!

Q!
,

P (D|Coh, T ) = { (N − CN)!

(N)!

(N − CN)!

(N)!
}2(CN)!

∑

Via

∏

ia

(δya+T,xi
)
Via .

These can be simplified further by observing that
∑

Via

∏
ia (δya,xi+T )

Via = Ψ!
(Ψ−M)!M ! ,

whereΨ is the total number of matches – i.e. the number of dots in the first frame that have
a corresponding dot at displacementT in the second frame (this includes “fake” matches
due to change alignment of noise dots in the two frames).

The Bayes rule for performing the tasks are given by testing the log-likelihood ratios: (i)
log P (D|Incoh)

P (D|Coh,T ) for detection (i.e. coherent versus incoherent), and (ii)log P (D|Coh,−T )
P (D|Coh,T ) for

discrimination (i.e. motion to right or to left). For detection, the log-likelihood ratio is a



function ofΨ. For discrimination, the log-likelihood ratio is a function of the number of
matches to the rightΨr and to the leftΨl. It is straightforward to calculate the Bayes risk
and determine coherence thresholds.

We can rederive Barlow and Tripathy’s model as an approximation to the Bayesian Ideal.
They make two approximations: (i) they model the distribution ofψ as Binomial, (ii) they
used′. Both approximations are very good near threshold, except for smallN . The use of
d′ can be justified ifP (Ψ|Coh, T ) and P (Ψ|Incoh) are Gaussians with similar variance.
This is true for largeN = 1000 and a range ofC but not so good for smallN = 100, see
figure (2).
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Figure 2: We plotP (Ψ|Coh, T ) and P (Ψ|Incoh), shown asP (Ψ|C) andP (Ψ|N) re-
spectively, for a range ofN andC. One of Barlow and Tripathy’s two approximations are
justified if the distributions are Gaussian with the same variance. This is true for largeN
(left two panels) but fails for smallN (right two panels). Note that human thresholds are
roughly 30 times higher than for BIO (the scales on graphs differ).

We computed the coherence threshold for the BIO and the BT models forN = 100 toN =
1000, see the second and fourth panels in figure (3). As described earlier, the BT threshold
is approximately independent of the numberN of dots. Our computations showed that the
BIO threshold is also roughly constant except for smallN (this is not surprising in light of
figure (2). This motivated psychophysics experiments to determine how humans performed
for smallN (this range of dots was not explored in Barlow and Tripathy’sexperiments).

All our data points are from 300 trials using QUEST, so errorsbars are so small that we do
not include them.

We performed the detection and discrimination tasks with translation motionT = 16 (as
in Barlow and Tripathy). For detection and discrimation, the human subject’s thresholds
showed similar trends to the thresholds for BIO and BT. But human performance at small
N are more consistent with BIO, see figure (3).
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Figure 3: The left two panels show detection thresholds – human subjects (far left) and BIO
and BT thresholds (left). The right two panels show discrimination thresholds – human
subjects (right) and BIO and BT (far right).

But probably the most striking aspect of figure (3) is how poorly humans perform compared
to the models. The thresholds for BIO are always higher than those for BT, but these
differences are almost negligible compared to the differences with the human subjects. The
experiments also show that the human subject trends differ from the models at largeN .
But these are extreme conditions where there are dots on mostpoints on the image lattice.



5 Degradating the Ideal Observer Models

We now degrade the Bayes Ideal model to see if we can obtain human performance. We
consider two mechanisms: (A) Humans do not know the precise value of the motion transla-
tionT . (B) Humans have poor spatial uncertainty. We will also combine both mechanisms.

For (A), we model lack of knowledge of the velocityT by summing over different motions.
We generate the stimuli as before fromP (D|Incoh) or P (D|Coh, T ), but we make the

decision by thresholding:log

∑
T

P (D|Coh,T )P (T )

P (D|Incoh) .

For (B), we model lack of spatial resolution by replacingP ({ya}|{xi}, {Via}, T ) =
(Q−N)!

(Q−CN)!

∏
ia Viaδya,xi+t byP ({ya}|{xi}, {Via}, T ) = (Q−N)!

(Q−CN)!

∏
ia ViafW (ya, xi + t).

HereW is the width of a spatial window, so thatfW (a, b) = 1/W 2, if |a − b| <
W ; fW (a, b) = 0, otherwise.

Our calculations, see figure (4), show that neither (A) nor (B) not their combination are
sufficient to account for the poor performance of human subjects. Lack of knowledge
of the correct motion (and consequently summing over several models) does little to de-
grade performance. Decreasing spatial resolution does degrade performance but even huge
degradations are insufficient to reach human levels. Barlowand Tripathy [2] argue that
they can degrade their model to reach human performance but the degradations are huge
and they occur in conditions (e.g.N = 50 orN = 100) where their model is not a good
approximation to the true Bayesian Ideal Observer.
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Figure 4: Comparing the degraded models to human performance. We use a log-log plot
because the differences between humans and model thresholds is very large.

6 Slowness and Slow-and-Smooth

We now consider an alternative explanation for why human performance differs so greatly
from the Bayesian Ideal Observer. Perhaps human subjects donot use the ideal model
(which is only known to the designer of the experiments) and instead use a general purpose
motion model. We now consider two possible models: (i) a slowness model, and (ii) a slow
and smooth model.
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Figure 5: The coherence threshold as a function ofN for different translation motionsT .
From left to right, human subject (HL), human subject (RK), 2DNN (shown forT = 16
only), and 1DNN. In the two right panels we have drawn the average human performance
for comparision.



The slowness model is partly motivated by Ullman’s minimal mapping theory [10] and
partly by the design of practical computer vision tracking systems. This model solves
the correspondence problem by simply matching a dot in the first frame to the closest
dot in the second frame. We consider a 2D nearest neighbour model (2DNN) and a 1D
nearest neighbour model (1DNN), for which the matching is constrained to be in horizontal
directions only. After the motion has been calculated we perform a log-likelihood test
to solve the discrimination and detection tasks. This enables us to calculate coherence
thresholds, see figure (5).

Both 1DNN and 2DNN predict that correspondence will be easy for small translation mo-
tions even when the number of dots is very large. This motivates a new class of experiments
where we vary the translation motion.

N=100, C=10% N=100, C=20% N=100, C=30% N=100, C=50%

N=100, C=10% N=100, C=20% N=100, C=30% N=100, C=50%

N=100, C=10% N=100, C=20% N=100, C=30% N=100, C=50%

Figure 6: The motion flows from Slow-and-Smooth forN = 100 as functions ofC and
T . From left to right,C = 0.1, C = 0.2, C = 0.3, C = 0.5. From top to bottom,
T = 4, T = 8, T = 16. The closed and open circles denote dots in the first and second
frame respectively. The arrows indicate the motion flow specified by the Slow-and-Smooth
model.

Our experiments show that 1DNN and 2DNN are poor fits to human performance. Human
performance thresholds are relatively insensitive to the numberN of dots and the trans-
lation motionT , see the two left panels in figure (5). By contrast, the 1DNN and 2DNN
thresholds are either far lower than humans for smallN or far higher at largeN with a
transition that depends onT . We conclude that the 1DNN and 2DNN models do not match
human performance.

We now consider the Slow-and-Smooth model [8,9] which has been shown to account for
a range of motion phenomena. We use a formulation [8] that wasspecifically designed for
dealing with the correspondence problem.



This gives a model of formP (V, v|{xi}, {ya}) = (1/Z)e−E[V,v]/Tm , where

E[V, v] =

N∑

i=1

N∑

a=1

Via(ya − xi − v(xi))
2 + λ||Lv||2 + ζ

N∑

i=1

Vi0, (2)

L is an operator that penalizes slow-and-smooth motion and depends on a paramtersσ, see
Yuille and Grzywacz for details [8]. We impose the constraint that

∑N
i=a Via = 1, ∀i,

which enforces that each pointi in the first frame is either unmatched, ifVi0 = 1, or is
matched to a pointa in the second frame.

We implemented this model using an EM algorithm to estimate the motion fieldv(x) that
maximizesP (v|{xi}, {ya}) =

∑
V P (V, v|{xi}, {ya}). The parameter settings areTm =

0.001, λ = 0.5, ζ = 0.01, σ = 0.2236. (The size of the units of length are normalized by
the size of the image). The size ofσ determines the spatial scale of the interaction between
dots [8]. This parameter settings estimate correct motion directions in the condition that all
dots move coherently,C = 1.0.

The following results, see figure (6), show that for 100 dots (N = 100) the results of the
slow-and-smooth model are similar to those of the human subjects for a range of different
translation motions. Slow-and-Smooth starts giving coherence thresholds betweenC = 0.2
andC = 0.3 consistent with human performance. Lower thresholds occurred for slower
coherent translations in agreement with human performance.

N=50, C=10% N=50, C=20% N=50, C=30% N=50, C=50%

N=100, C=10% N=100, C=20% N=100, C=30% N=100, C=50%

N=1000, C=10% N=1000, C=20% N=1000, C=30% N=1000, C=50%

Figure 7: The motion fields of Slow-and-Smooth forT = 16 as a function ofc andN .
From left to right,C = 0.1, C = 0.2, C = 0.3, C = 0.5. From top to bottom,N =
50, N = 100, N = 1000. Same conventions as for previous figure.

Slow-and-Smooth also gives thresholds similar to human performance when we alter the
numberN of dots, see figure (7). Once again, Slow-and-Smooth starts giving the correct
horizontal motion betweenc = 0.2 andc = 0.3.



7 Summary

We defined a Bayes Ideal Observer (BIO) for correspondence noise and showed that Bar-
low and Tripathy’s (BT) model [2] can be obtained as an approximation. We performed
psychophysical experiments which showed that the trends ofhuman performance were
more similar to those of BIO (when it differed from BT).

We attempted to account for human’s poor performance (compared to BIO) by allowing for
degradations of the model such as poor spatial resolution and uncertainty about the precise
translation velocity. We concluded that these degradationhad to be implausibly large to
account for the poorness of human performance. We noted thatBarlow and Tripathy’s
degradation model [2] takes them into a regime where their model is a bad approximation
to the BIO.

Instead, we investigated the possibility that human observers perform these motion tasks
using generic probability models for motion possibly adapted to the statistics of motion in
the natural world. Further psychophysical experiments showed that human performance
was inconsistent with a model than prefers slow motion. But human performance was
consistent with the Slow-and-Smooth model [8,9].

We conclude with two metapoints. Firstly, it is possible to design ideal observer models for
complex stimuli using techniques from Bayes decision theory. There is no need to restrict
oneself to the traditional models described in classic signal detection books such as Green
and Swets [3]. Secondly, human performance at visual tasks may be based ongeneric
models, such as Slow-and-Smooth, rather than the ideal models for the experimental tasks
(known only to the experimenter).

References

[1] Geisler, W.S. “Ideal Observer Analysis”. In L. Chalupa and J. Werner (Eds). The Visual Neuro-
scienes. Boston. MIT Press. pp 825-837. 2002.

[2] Barlow, H., and Tripathy, S. P. (1997). Correspondence noise and signal pooling in the detection
of coherent visual motion. Journal of Neuroscience, 17(20), 7954-7966.

[3] Green, D. M., and Swets, J. A. (1966). Signal detection theory and psychophysics. New York:
Wiley.

[4] Morrone, M. C., Burr, D. C., and Vaina, L. M. (1995). Two stages of visual processing for radial
and circular motion. Nature, 376(6540), 507-509.

[5] Neri, P., Morrone, M. C., and Burr, D. C. (1998). Seeing biological motion. Nature, 395(6705),
894-896.

[6] Song, Y., and Perona, P. (2000). A computational model for motion detection and direction dis-
crimination in humans. Paper presented at the IEEE computersociety workshop on Human Motion,
Austin, Texas.

[7] Wallace, J. M and Mamassian, P. (2004) The efficiency of depth discrimination for non-
transparent and transparent stereoscopic surfaces. Vision Research, 44, 2253–2267..

[8] Yuille, A.L. and Grzywacz, N.M. (1988). A computationaltheory for the perception of coherent
visual motion. Nature, 333:71 74,

[9] Weiss, Y., and Adelson, E. H. (1998). Slow and smooth: A Bayesian theory for the combination of
local motion signals in human vision Technical Report 1624.Massachusetts Institute of Technology.

[10] Ullman, S. (1979). The interpretation of Visual Motion. MIT Press, Cambridge, MA, 1979.


