
A biological motion toolbox for reading, displaying, and
manipulating motion capture data in research settings

Jeroen J. A. van Boxtel # $

Department of Psychology, University of California–Los Angeles,
Los Angeles, CA, USA

Faculty of Medicine, Nursing and Health Sciences,
Monash University, Clayton Campus, Victoria, Australia

Hongjing Lu # $

Department of Statistics and Department of Psychology,
University of California–Los Angeles,

Los Angeles, CA, USA

Biological motion research is an increasingly active field,
with a great potential to contribute to a wide range of
applications, such as behavioral monitoring/motion
detection in surveillance situations, intention inference
in social interactions, and diagnostic tools in autism
research. In recent years, a large amount of motion
capture data has become freely available online,
potentially providing rich stimulus sets for biological
motion research. However, there currently does not exist
an easy-to-use tool to extract, present and manipulate
motion capture data in the MATLAB environment, which
many researchers use to program their experiments. We
have developed the Biomotion Toolbox, which allows
researchers to import motion capture data in a variety of
formats, to display actions using Psychtoolbox 3, and to
manipulate action displays in specific ways (e.g.,
inversion, three-dimensional rotation, spatial scrambling,
phase-scrambling, and limited lifetime). The toolbox was
designed to allow researchers with a minimal level of
MATLAB programming skills to code experiments using
biological motion stimuli.

Introduction

The ability to recognize and interpret movements of
the human body is essential for inferring the goals and
intentions of other people. The motions created by
living organisms are often termed ‘‘biological motion,’’
and such motion provides critical cues to convey
socially important affective information (Chouchour-
elou, Matsuka, Harber, & Shiffrar, 2006; Dittrich,
Troscianko, Lea, & Morgan, 1996; Roether, Omlor,
Christensen, & Giese, 2009) and communicative signals

for human interactions (Manera, Schouten, Becchio,
Bara, & Verfaillie, 2010; Poizner, Bellugi, & Lutes-
Driscoll, 1981). Given its ecological importance in
survival and social interactions, humans are exquisitely
sensitive in recognizing and interpreting biological
motion patterns (e.g., Matsuzaki & Sato, 2008; Pollick,
Hill, Calder, & Paterson, 2003), but exactly how the
brain achieves this feat is still largely a mystery.

Because of its importance to human functioning,
biological motion has been an increasingly important
research topic, drawing attention from researchers in
fields such as perception, neuroscience, computer
vision, and robotics. Just within the field of perception,
biological motion research has been conducted in areas
as diverse as animal perception, infant studies, and
autism research. For example, biological motion has
been employed to investigate humans’ sensitivity to
communicative and social interactions (Chouchourelou
et al., 2006; Dittrich et al., 1996; Manera et al., 2010;
Poizner et al., 1981; Roether et al., 2009), emotion
(Chouchourelou et al., 2006; Dittrich et al., 1996;
Hubert et al., 2007; Pollick et al., 2003; Pollick,
Paterson, Bruderlin, & Sanford, 2001), sensitivity to
different types of action (Dittrich, 1993; van Boxtel &
Lu, 2011), developmental research in children (Carter
& Pelphrey, 2006; Fox & McDaniel, 1982; Pelphrey &
Carter, 2008) and adults (Norman, Payton, Long, &
Hawkes, 2004; Pilz, Bennett, & Sekuler, 2010), sensi-
tivity of animals to biological motion (Herman,
Morrel-Samuels, & Pack, 1990; Oram & Perrett, 1994;
Regolin, Tommasi, & Vallortigara, 2000), autism
spectrum disorder (e.g., Blake, Turner, Smoski, Pozdol,
& Stone, 2003; Freitag et al., 2008; Herrington et al.,
2007; Hubert et al., 2007; Murphy, Brady, Fitzgerald,

Citation: van Boxtel, J. J. A., & Lu, H. (2013). A biological motion toolbox for reading, displaying, and manipulating motion
capture data in research settings. Journal of Vision, 13(12):7, 1–16, http://www.journalofvision.org/contents/13/12/7, doi:10.
1167/13.12.7.

Journal of Vision (2013) 13(12):7, 1–16 1http://www.journalofvision.org/content/13/12/7

doi: 10 .1167 /13 .12 .7 ISSN 1534-7362 � 2013 ARVOReceived April 12, 2013; published October 15, 2013

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

http://www.jeroenvanboxtel.com/software
http://www.jeroenvanboxtel.com/software
mailto:j.j.a.vanboxtel@gmail.com
mailto:j.j.a.vanboxtel@gmail.com
http://cvl.psych.ucla.edu
http://cvl.psych.ucla.edu
mailto:hongjing@ucla.edu
mailto:hongjing@ucla.edu

& Troje, 2009; Parron et al., 2008), and contributions
of low- and high-level brain areas to visual perception
(Chang & Troje, 2009; Hirai & Kakigi, 2008; Thurman
& Lu, 2013; van Boxtel & Lu, 2013). Furthermore,
neuroimaging and physiological studies aim to reveal
the neurobiological underpinnings of biological motion
perception. Significant progress has been made in terms
of localizing brain areas specific to biological motion
(Grossman et al., 2000; Oram & Perrett, 1994) and
social perception (Iacoboni et al., 2004), providing
evidence for thought-provoking concepts such as
‘‘snapshot’’ neurons (Vangeneugden, Pollick, & Vogels,
2009) and identifying brain (endo-)phenotypes of e.g.,
autism spectrum disorder (e.g., Freitag et al., 2008;
Herrington et al., 2007; Hubert et al., 2007; Kaiser &
Pelphrey, 2012).

Although in recent decades researchers have made
impressive advances in understanding the basis for the
perception of biological motion, many fundamental
questions still remain unanswered. The complexity of
stimuli poses one of the difficult issues that researchers
confront. There is, as far as we know, no easy way in
which a researcher with limited programming skills
interested in biological motion perception can take
recorded data from motion capture systems and display
the action in a research setup. The lack of an easy tool
for presenting and manipulating biological motion
stimuli motivated us to develop the BiomotionToolbox.

Biological motion can be investigated in many ways.
One can show movies to observers or static images with
postures that imply motion. However, the most
popular display in psychophysics, developed by Jo-
hansson (1973), is a technique based on point-light
actions. Historically, point-light actions were made by
placing markers at several important joints of an actor
and recording the performed action in darkness, such
that only the marked joints were visible. Nowadays,
point-light displays (PLDs) are generally created on a
computer, using video or motion capture input. The
main advantage of PLDs is that they contain mainly
motion information and very little extraneous form
information about human body structure or other cues
such as facial expressions, shadows, hair, or clothing.
One also has considerable freedom in manipulating the
marker motions, for example by inverting them
(Pavlova & Sokolov, 2000; Sumi, 1984) or by changing
the spatial layout (Bertenthal, Proffitt, & Kramer,
1987). The BiomotionToolbox is specifically designed
to display and manipulate PLDs, allowing for specific
manipulations with a single call to a function.

A popular way to create PLD data is to capture an
action with a video camera and convert this data to
PLD manually (or sometimes automatically) by ex-
tracting the joints from each movie frame and
recording the positions so they can be replayed later in
an experiment. As well as being labor intensive, this

method restricts the potential uses of PLDs because the
joint location can only be captured two-dimensionally
and thus it cannot be viewed from other viewing angles.
In addition, joints may be invisible due to occluding
body parts, and the PLD can only be displayed from
one viewing distance (the original recording distance).

In recent years, it has become possible to overcome
these problems by employing motion capture data
(MCD). MCD can be acquired in several different
ways, but the main idea is to use three or more cameras
(rather than just one) to record the motions of marked
joints in three-dimensional (3-D) space, plus time. With
this setup, each joint can be followed continuously, and
in 3-D, thus circumventing the problems associated
with a single-camera setup. The disadvantage of this
method is that it requires specialized equipment and a
dedicated recording space. Therefore, most researchers
do not have a motion capture device at their disposal.
However, because of its increasing popularity, more
MCD has become available online, with several of
these databases being free (see Appendix III for a
selection). These databases contain a wide range of
actions and should give most researchers enough
flexibility to select appropriate biological motion
stimuli in order to address the questions in which they
are interested.

Unfortunately, for many researchers the use of these
online motion capture databases is difficult because
they lack the knowledge of how to convert the files
from motion capture system into useable formats that
can be displayed on a computer screen for psycho-
physical experiments. In addition, rotating, inverting or
scrambling the MCD may pose problems. Many
researchers may be deterred by these daunting hurdles,
causing many potentially fruitful research ideas not to
be pursued.

The BiomotionToolbox we developed takes most of
these tasks out of the hands of the researchers and
automates them; the BiomotionToolbox allows re-
searchers to read a variety of motion capture data, then
write and manipulate biological motion data obtained
from motion capture devices. In combination with the
Psychtoolbox 3.0 (Brainard, 1997; Pelli, 1997, the
BiomotionToolbox allows for easy-to-program bio-
logical motion research in the MATLABt environment
(The MathWorks, Inc., Natick, MA). The Biomotion-
Toolbox is designed to allow people with minimal
programming skills to create experiments with complex
biological motion stimuli. We have employed an early
version of the toolbox in a recent study (van Boxtel &
Lu, 2013). Partial forms of the toolbox were used by
van Boxtel and Lu (2011, 2012).

In the following sections we will discuss the central
functions of the BiomotionToolbox. We explain how to
set up the toolbox, how to initialize biological motion
objects, how to manipulate them (e.g., inverting and

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 2

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

rotating), and how to obtain the data required to
display them.

Definitions

The BiomotionToolbox is written around a MAT-
LAB handle class. An instance of such a class (as
created during the Initialization, explained below) is
called an object. With the purpose of the toolbox in
mind, one can think of an object as a biological motion
actor. In the subsequent sections we will therefore often
refer to such an object as a biological motion object,
often called myMO (short for my motion object) in our
example coding programs.

Each object has several properties (i.e., settings or
parameters) that describe the state of the object (e.g., if
it is inverted). Similarly, objects have associated
functions (called methods) that operate on the data
contained in the object. Using these methods, one can
access and alter the biological motion data.

Parameters and methods can be read or invoked with
the dot-operator. For example, when one wants to
know if an actor is inverted, one can call myMO.In-
vert, and when one wants to invert the actor, one can
call myMO.Invert¼ 1. Methods work the same way.
For example, one can call the function SmoothLoop
as follows: myMO.SmoothLoop. See the additional
codes (Appendix II) for examples.

Getting started

Getting started is easy. Download the toolbox from
http://www.jeroenvanboxtel.com/software/
BioMotionToolbox.php, and add the BiomotionTool-
box folder to the path in MATLAB.

Supported file formats

The BiomotionToolbox was designed to read motion
capture data from various sources. Motion capture can
be saved in various formats (e.g., bvh, c3d, and ASF/
AMC). Some research groups have made motion
capture data available in custom formats (Ma, Pater-
son, & Pollick, 2006; Vanrie & Verfaillie, 2004). The
BiomotionToolbox currently supports several of these
formats (see Table 1 for supported formats) and uses
one of them as a default (data3d). The c3d format is
read with an example code provided on the motion
capture site of Carnegie Mellon University (http://
mocap.cs.cmu.edu/tools.php).

The data3d format

The BiomotionToolbox accepts several file types, but
its native format is data3d. This is a text file that
contains the motion capture data in the following
format:

Time1_Joint1_x Time1_Joint2_x Time1_Joint3_x . . .

Time1_Joint1_y Time1_Joint2_y Time1_Joint3_y . . .

Time1_Joint1_z Time1_Joint2_z Time1_Joint3_z . . .

Time2_Joint1_x Time2_Joint2_x Time2_Joint3_x . . .

Time2_Joint1_y Time2_Joint2_y Time2_Joint3_y . . .

Time2_Joint1_z Time2_Joint2_z Time2_Joint3_z . . .

.

Each column contains the position information for
one joint, and each triplet of rows defines the x-, y-, and
z-coordinates in 3-D.

Using 2-D data

In case a user wants to use the BiomotionToolbox
on previously acquired 2-D data, those data can be
imported, with all z-coordinates set to zero, and saved
as a txt file in the data3d format. Then one can
initialize a biological motion object as if it were 3-D
and make use of all the functions of the Biomotion-
Toolbox. Missing data (e.g., due to occlusion) should
be denoted with NaN (not a number) for x-, y-, and z-
coordinates.

Initialization

Basic initialization

A user needs to initialize a Biomotion object (i.e., an
action) before using it. In its most basic instantiation,
initialization requires only a filename that contains 3-D
motions of all joints.

myMO¼ BioMotion(‘filename’);
This command will open the file filename and

automatically initializes all the necessary parameters in
the Biomotion object myMO.

The BiomotionToolbox can often recognize what the
input format of motion capture data is (e.g., bvh or
c3d), but this function strongly depends on the use of
the correct file extension (see Table 1 for supported
formats). If your file has a nonstandard file extension
but the file nonetheless contains readable motion
information, you need to provide the type of input in
the optional properties (see ‘‘Options’’ below).

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 3

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

http://www.jeroenvanboxtel.com/software/BioMotionToolbox.php
http://www.jeroenvanboxtel.com/software/BioMotionToolbox.php
http://mocap.cs.cmu.edu/tools.php
http://mocap.cs.cmu.edu/tools.php

Options

The initialization routine has several options that
will allow the user to customize the initialization of the
input data. The options allow the user to define the file
type, to anchor the Biomotion object to a certain
location, and to read a subset of the joints (markers) or
frames from the motion capture data.

The optional customizations should be entered as
follows:

myMO ¼ BioMotion(‘filename’, ‘Proper-
tyName1’, ‘PropertyValue1’, ...);

Behind filename, one or more pairs of ‘Prop-
ertyNames’ (in quotes), and PropertyValues
should follow. PropertyName is the name of one of
the optional properties that the user likes to set, and
PropertyValue is the value that the user would like
to assign to that property. Possible property names are
‘Filetype’, ‘Anchor’, ‘SelectJoints’,
and ‘SelectFrames’, which we will discuss below.

Filetype

To prevent potential problems reading the files, or to
clearly define the file type when using a nonstandard
extension, a user can employ the property Filetype.
The user can manually provide the file type of the
imported data in PropertyValue. Options are
‘ptd’, ‘pollick’, ‘vanrie’, ‘c3d’, ‘bvh’,
and ‘data3d’ (see Table 1). When Filetype is not
provided, the program attempts to determine the file
type automatically, mostly based on the file extension.

Anchor

The option Anchor allows the user to select a set of
joints, which will function as a spatial ‘‘anchor’’ for the
biological motion. Anchoring here means that the
average position of all joint numbers provided as
PropertyValues will be repositioned to [0, 0, 0].
This allows one, for example, to display a Biomotion
walker to walk ‘‘on a treadmill’’ in the center of the
screen. Note that the PropertyValues for Anchor

are relative to the input file and not relative to the joints
selected with SelectJoints.

SelectJoints

This option provides a way to select a subset of the
joints from the input file by providing their indices in
an array in the PropertyValue. For example, many
of the bvh actions in the Carnegie Mellon Database
(created with the amc2bvh program) provide several
dozens of joint markers, and in order to create a
standard actor with 13 joints, a user needs to select
those joints. For most bvh files in this particular
database, the 13 joints often are associated with the
following indices, [17 19 20 21 26 27 28 3 4 5 8 9 10],
respectively corresponding to Head, Shoulder1, El-
bow1, Wrist1, Shoulder2, Elbow2, Wrist2, Hip1,
Knee1, Ankle1, Wrist2, Knee2, Ankle2. In this case, a
user can define the option as myMO¼ BioMo-
tion(‘filename’, ‘SelectJoints’, [17 19
20 21 26 27 28 3 4 5 8 9 10]);

SelectFrames

This option provides a way to select a subset of the
frames from the input file by providing their indices in
an array in the PropertyValue. Note that the
frames are played in the order in which they appear in
PropertyValue. Thus, BioMotion(‘file-
name’, ‘SelectFrames’, 1:10) will take the
first ten frames from the input file. BioMotion
(‘filename’, ‘SelectFrames’, [1 50 29 67 2
6]) will take the requested frames in the provided
order. If you want to play them in ascending/
descending order you will need to sort the array before
you provide them as input (e.g., using the MATLAB
function sort).

Empty initialization

A user can also initialize an empty Biomotion object,
by calling BioMotion without arguments: myMO¼
BioMotion();

Extension File type Description

ptd ptd or pollick Files from the Pollick lab Body Movement Library

txt vanrie Text files from the Leuven Action Database

c3d c3d c3d files

bvh bvh bvh files

txt data3d Text file that is in the format natively supported by the BiomotionToolbox. It is formatted as

the transpose of JointsInfo.

Table 1. Supported file formats. Both ‘vanrie’ and ‘data3d’ file types have the extension txt. The BiomotionToolbox will
recognize the difference between them based on the content of the files, or by the user-provided file type.

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 4

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

Initialization from an array

When a user already has motion capture data in an
array and wants to create a Biomotion object, the user
can still use the same initialization step as above. To do
so, instead of providing a file name, the user can
directly input an array. This array must follow the
format of NormJointsInfo, i.e., [number of joints ·
number of frames · 3 (x-, y-, z-coordinates)], otherwise
an error message will be returned (or the action will not
display properly). For example, BioMotion(array,
‘SelectFrames’, [1 50 29 67 2 6]).

Making arrays of Biomotion objects

It is often useful to generate an array of different
actions. This will allow the use of SetAll and
SetAllVect (see Toolbox methods), for fast and easy
setting of properties. The main function for reading
data, GetFrame, also works with an array of
Biomotion objects.

An array of Biomotion objects can be created as
follows:

bmArray(1) ¼ BioMotion(‘filename1’);
bmArray(2) ¼ BioMotion(‘filename2’);
or
bm1¼ BioMotion(‘FileWithBm1Data’);
bm2¼ BioMotion(‘FileWithBm2Data’);
bmArray ¼ [bm1 bm2];
Both these codes create an array of two Biomotion

objects. Note that initializing one Biomotion object
(bm1) and then typing bmArray ¼ [bm1 bm1] will
also create a Biomotion array, but in this case the two
items are ‘‘yoked,’’ that is, if a property is changed in
one object, it will be changed in the other too. This
characteristic is a property of the handle class in
MATLAB. If a user wants to create an array of
independent copies of bm1, the user will need to use the
either of the two above-explained initializations or use
the Copy method (see below).

Copying Biomotion objects

A user should not copy Biomotion objects using the
‘‘is equal’’ sign (¼). For example, do not do something
like bm2 ¼ bm1. Because the Biomotion object is a
‘‘handle’’ class in MATLAB, bm2 will not just be a
simple copy. Instead, the command with the equal sign
provides a ‘‘link’’ (handle) to bm1, and therefore
anything that is changed in bm2 will also change in
bm1, and vice versa (i.e., they are yoked).

To allow copying of the data from one object to
another, the BiomotionToolbox includes a method that
ensures independence of both objects. This is the Copy
function, which copies all the properties (both public
and private) of one object to another object. To copy
object A into object B, call B¼ A.Copy;

In order to make an array of copies of bm1 (as
attempted above) one can type the following:
bmArray ¼ [bm1 bm1.Copy].

Note that Copy is relatively slow (on the order of
100 ms per copy). Therefore, do not copy objects in
time-constrained situations (as when attempting to
update every monitor frame).

Toolbox properties

After initialization, an object generated with the
BiomotionToolbox (e.g., myMO) will contain several
fields (properties). Most of these fields are set after
initialization, but can be modified by the user. Other
properties are read-only.

Changing these properties will set often-used ma-
nipulations of the biological motion stimuli, including
inversion, rotation, spatial scrambling, phase scram-
bling, and limited lifetime manipulations. For example,
inverting an action is as simple as calling

myMO.Invert¼ 1
These properties, and the user’s control over them

are the core value of the BiomotionToolbox. An
overview of the toolbox properties and their description
is provided in Table 2 and Table 3. A more detailed
description of how to use these properties is provided in
Appendix I.

Toolbox methods

The objective of the BiomotionToolbox is to allow
easy manipulation and displaying of motion-capture
data in a point-light display. A central method of the
BiomotionToolbox is GetFrame, which allows a user
to access (read) the motion capture data. To access the
3-D positions of all joints in a single frame, a user can
call myMO.GetFrame(n), which will output the joint
positions of myMO at frame n (returning a 3 ·
nPointLights array). If myMO is an array of objects,
GetFrame will a return the joints at frame n of all
objects. These data can then be displayed with the
function moglDrawDots3D from the PsychToolbox
(see examples in Appendix II).

By default, GetFrame will return the 3-D coordi-
nates of all the joints for the requested frame number,
but a user can also specify a subset of joints. Both the

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 5

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

frame number and the joints can be separately specified
for different objects in an object array (see Appendix I).
For many applications GetFrame is the only function
(apart from initialization) that one will use (see
Appendix II for example programs).

To increase the efficiency of manipulating param-
eters in Biomotion stimuli, two methods are included
in the toolbox to allow quick setting of parameters in
an array of Biomotion objects. These functions are
SetAll and SetAllVect, which allow one to set
one property value (e.g., Scramble), or an array
(e.g., Position3D) for several biological motion
objects at the same time (see Appendix I).

A convenient way to rotate an entire Biomotion
object is to use RotatePath. RotatePath(val),
rotates the entire movie by the amount specified in val
(in radians). The rotation axis is defined in myMO.R-

otationAxis. This function achieves the same as
calling myMO.Rotation ¼ val, but does it on all
frames simultaneously, and changes NormJoint-
sInfo. myMO.Rotation performs the rotation on
each frame as you call GetFrame. Thus RotatePath
may be faster in certain situations. For example it is
useful in cases where it turns out that your input file
contains the joint information upside-down. To put the
action upright, set myMO.RotationAxis¼ [1 0 0]
(rotation around x-axis), and then myMO.Rotate-
Path(pi).

Sometimes the looping of the movie is not perfect
(the transition from the last frame back to the first is
not smooth). Smoothloop may help in smoothing the
transition when looping an action. Smoothloop will
calculate the linear distance between the position of
each joint in the first and last frame, and then add an
increasingly bigger offset to successive frames to

Read only fields

nPointLights Number of point lights (¼ markers) making up the actor.

nFrames Number of frames in the action sequence.

Filename Contains the name of the file that is used to generate the Biomotion object.

Filetype Contains the extension (or the file type) of the file used to generate the Biomotion object.

JointsInfo JointsInfo contains the 3-D joint information in the following format:

column x_positions time 1, column y_positions time 1, column z_positions time 1, column

x_positions time 2, ... etc.

The size of this 2-D array is [nPointLights · (3 · nFrames)].

NormJointsInfo NormJointsInfo contains the 3-D joint information in the format [npointlights ·
nframes · 3 [x y z dimensions]] after normalization.

AnchorJoints AnchorJoints contains the joints that were used to calculate the ‘‘center of mass’’ of
the actor. The average position of the AnchorJoints joints will be at [0, 0, 0] in 3-D

space, e.g., a user can ensure a ‘‘treadmill’’ walk by providing the indices of the hip

joints. For several input files the default values are the two hip joints (i.e., [8 11] for any

data3d file), [10 13] for ptd files, and [8 9] for vanrie files. For bvh and c3d files, the

default is to use all joints.

A user also can input ‘none’, which will prevent the joint array from being anchored.

If a user does not want to use the default values, the user needs to provide these

numbers as property values of ‘Anchor’ when a Biomotion object is initialized. Note,

however, that the indices in AnchorJoints are relative to the current Biomotion

object, while the property values in ‘Anchor’ should be defined relative to the input file.

InfoLimitedLife InfoLimitedLife is an object from the limitedlifetime class, and contains

information about the limited lifetime properties.

InfoLimitedLife is empty by default, but when LimitedLife is set to 1, it is

created. It then contains the following fields:

maxlife: the maximum lifetime of each marker

ndots: the number of markers that will be drawn (must be less than or equal to the

number of skeleton segments in myOM.Skeleton

type: the type of refresh. Can be ‘async’ and ‘sync’. If ‘async’ all the dots

are initialized with a random age (� maxlife), and will thus be refreshed

asynchronously. If ‘sync’, all dots will be initialized with age 1, and thus will be

refreshed synchronously.

takedots: logic array that indicates which markers are selected to be displayed (1) or

not (0).

Table 2. Read-only properties.

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 6

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

completely cancel out the spatial differences by the last

frame. This function will only work on differences

between the first and last frame and will not remove a

deviant value in an intermediate frame.

SaveData3D allows you to save the current PLD in

data3d format. This is useful, for example, when you

initialize with a bvh or c3d file, which are slow to

import. Saving the data in data3d format, and then

using that file to initialize the biological motion object

in the experimental program will be much faster.

SetLimitedLifetimeParams can be used to

change the parameters of limited lifetime stimuli. Users

can change the number of dots (ndots) and the dot

lifetime (maxlife). Before, using this function, set the
LimitedLife to 1.

Troubleshooting

We have tried to provide sufficient error feedback to
allow the user to identify the error in the code in most
cases. The most common error is that an out-of-bounds
(e.g., too large) frame number is requested. If this is the
case, you will receive an error message that identifies
this error. You can solve this problem by setting Loop
to 1. We have not opted to make 1 as the default value

Read and write fields

Invert Invert (1) the action, or not (0; default)

Scramble Space scramble (1) the action, or not (0; default)

Rotation Rotation angle (radians; 0 is default). The rotation is relative to the current orientation.

RotationAxis Rotation axis. The axis [x y z] around which the rotation is performed. e.g., in order to

rotate around the x-axis, put RotationAxis to [1 0 0]. Default is [0 1 0], rotation in depth.

ScrambleDim When (location) scrambling the action, only the dimensions indicated here will be

scrambled. Default ‘xyz’ can be changed to ‘y’ or ‘xz’, etc.
ScrambleWidth Maximum scramble amount in x direction (default is max span in x direction over the

duration of the movie)

ScrambleHeight Maximum scramble amount in y direction (default is max span in y direction over the

duration of the movie)

ScrambleDepth Maximum scramble amount in z direction (default is max span in z direction over the

duration of the movie)

ScrambleOffsets Array of size [3 · nPointLights] with [x y z] scramble amount for each joint. Will be set

automatically when setting Scramble to 1. But can also be set manually (before setting

Scramble to 1), either by inputting it directly, or by calling ScramblePositions
after setting ScrambleWidth, etc., to the desired values.

Position3D Displace the 3-D location of the actor by a certain amount. Input a 1 · 3 vector with x, y,

and z values ([x y z]).

Scale Scale the actor. This scaling is relative to the current size, so if you call it twice in a row, the

actor will increase twice. e.g., calling BM.Scale ¼ 2; and then again BM.Scale ¼ 2;

will result in a four-times larger actor.

Loop Loop the movie when reaching the end of the action sequence. 1 ¼ yes or 0 ¼ no

(default).

LimitedLife Display the action as a limited lifetime stimulus (1) or not (0; default).

PhaseScramble Phase scramble the Biomotion object (0 [default] or 1).

PhaseOffsets A [1 · nPointLights] array with the phase offsets (in number of frames) for each joint of

the Biomotion object. This will be set automatically when you set PhaseScramble to 1,

but there is an option to set it manually.

Skeleton Defining e.g., an arm that goes from marker 2 to 3 and then to 4, you will define the

skeleton as [2 3; 3 4; ...]. The ellipses (...) is where the other limb segments will be

defined. It is essential to set this property when using limited lifetime markers that need

to be drawn on the skeleton (and not just on the joints).

When setting LimitedLife to 1, Skeleton will be set to [1 1; 2 2; 3 3; ...], that is

the markers will be drawn on the joints.

Table 3. Readable and writable properties.

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 7

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

of Loop, because this would never produce an error,
making a programming mistake hard to spot when
Looping is not desired.

Performance increase

The BiomotionToolbox is structured around a handle
class in MATLAB. Handle classes are somewhat slower
than, e.g., a struct or an old-style class definition in
MATLAB. However, we have found the speed to be
sufficiently fast to compute and display at least three
PLDs simultaneously in real time on the slowest
computer in our lab. Other setups (e.g., an Intel core 2
quad q6600 @ 2.40 GHz, with 3.5 GB RAM, and ATI
Radeon X1600 Series graphics card) could display at
least 15 objects simultaneously and in real time. Of
course speed depends on various variables, including
what other programs are running on the computer, your
graphics card, and what else you display on the screen.

There are ways to increase performance during real-
time computation in BiomotionToolbox. Change
properties as little as possible (e.g., set Invert before the
experiment, and not on every frame). Use RotatePath
when you want to apply the rotation to every frame,
rather than using the Rotation property (which
implements a rotation on every call to GetFrame and is
therefore slower).

Initializing a Biomotion object from a c3d or bvh file
takes a long time. It may be better to create data3d files
from the c3d or bvh files offline and use those files from
thenon.This canbedonewith themethodSaveData3D.

Another way to speed up a program is to use an
alternative way to call methods. In the examples we use
the dot operator, but it is also possible to pass a
Biomotion object as an argument to a function, which
is faster (especially on older versions of MATLAB).
Thus, instead of calling myMO.GetFrame(1) to get
frame 1, a user can call GetFrame(myMO,1) to speed
up the program.

Limitations

Currently a limitation is the number of input formats
that the BiomotionToolbox currently accepts. Motion
capture data is available in many different formats, and
we have chosen to implement some of the most prevalent,
including two (vanrie and ptd) that have been used in
recent papers (Ma et al., 2006; Vanrie & Verfaillie, 2004).
Still, some formats are missing (notably the ASF/AMC
format), and we hope that future versions of the
BiomotionToolbox will accept more formats. Readers
can check for updates at http://www.jeroenvanboxtel.

com/software/BioMotionToolbox.php or http://cvl.
psych.ucla.edu/resources.htm.

Final remarks

We have included some sample code to show a point-
light stimulus (example 1), a scrambled actor (example
2), a limited lifetime example (example 3; Appendix II)
and a set of motion-capture databases to get a user
started (Appendix III). The sample code will help users
learn how to manipulate and display data using the
BiomotionToolbox. We hope that this toolbox and the
other information provided in this paper (e.g., the
motion capture databases) will facilitate research on
biological motion.

Keywords: biological motion, motion capture, toolbox

Acknowledgments

This project was supported by a grant from the
National Science Foundation (NSF BCS-0843880).
The motion-capture data used in the sample code was
obtained from http://mocap.cs.cmu.edu, which was
created with funding from NSF EIA-0196217.

Commercial relationships: none.
Corresponding author: Jeroen J. A. van Boxtel.
Email: j.j.a.vanboxtel@gmail.com.
Address: School of Psychology and Psychiatry, Mon-
ash University, Victoria, Australia.

References

Beintema, J. A., & Lappe, M. (2002). Perception of
biological motion without local image motion.
Proceedings of the National Academy of Sciences,
USA, 99(8), 5661–5663.

Bertenthal, B. I., Proffitt, D. R., & Kramer, S. J.
(1987). Perception of biomechanical motions by
infants: Implementation of various processing
constraints. Journal of Experimental Psychology:
Human Perception & Performance, 13(4), 577–
585.

Blake, R., Turner, L. M., Smoski, M. J., Pozdol, S. L.,
& Stone, W. L. (2003). Visual recognition of
biological motion is impaired in children with
autism. Psychological Science, 14(2), 151–157.

Brainard, D. H. (1997). The Psychophysics Toolbox.
Spatial Vision, 10(4), 433–436.

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 8

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

http://www.jeroenvanboxtel.com/software/BioMotionToolbox.php
http://www.jeroenvanboxtel.com/software/BioMotionToolbox.php
http://cvl.psych.ucla.edu/resources.htm
http://cvl.psych.ucla.edu/resources.htm
http://mocap.cs.cmu.edu

Carter, E. J., & Pelphrey, K. A. (2006). School-aged
children exhibit domain-specific responses to
biological motion. Social Neuroscience, 1(3–4),
396–411.

Chang, D. H., & Troje, N. F. (2009). Characterizing
global and local mechanisms in biological motion
perception. Journal of Vision, 9(5):8, 1–10, http://
www.journalofvision.org/content/9/5/8, doi:10.
1167/9.5.8. [PubMed] [Article]

Chouchourelou, A., Matsuka, T., Harber, K., &
Shiffrar, M. (2006). The visual analysis of emo-
tional actions. Social Neuroscience, 1(1), 63–74.

Dittrich, W. H. (1993). Action categories and the
perception of biological motion. Perception, 22(1),
15–22.

Dittrich, W. H., Troscianko, T., Lea, S. E., & Morgan,
D. (1996). Perception of emotion from dynamic
point-light displays represented in dance. Percep-
tion, 25(6), 727–738.

Fox, R., & McDaniel, C. (1982). The perception of
biological motion by human infants. Science,
218(4571), 486–487.

Freitag, C. M., Konrad, C., Haberlen, M., Kleser, C.,
von Gontard, A., Reith, W., et al. (2008).
Perception of biological motion in autism spectrum
disorders. Neuropsychologia, 46(5), 1480–1494.

Guerra-Filho, G., & Biswas, A. (2012). The human
motion database: A cognitive and parametric
sampling of human motion. Image & Vision
Computing, 30(3), 251–261.

Grossman, E., Donnelly, M., Price, R., Pickens, D.,
Morgan, V., Neighbor, G., et al. (2000). Brain areas
involved in perception of biological motion. Jour-
nal of Cognitive Neuroscience, 12(5), 711–720.

Herman, L. M., Morrel-Samuels, P., & Pack, A. A.
(1990). Bottlenosed dolphin and human recognition
of veridical and degraded video displays of an
artificial gestural language. Journal of Experimental
Psychology, General, 119(2), 215–230.

Herrington, J. D., Baron-Cohen, S., Wheelwright, S. J.,
Singh, K. D., Bullmore, E. T., Brammer, M., et al.
(2007). The role of MTþ/V5 during biological
motion perception in Asperger syndrome: An
fMRI study. Research in Autism Spectrum Dis-
orders, 1(1), 14–27.

Hirai, M., & Kakigi, R. (2008). Differential cortical
processing of local and global motion information
in biological motion: An event-related potential
study. Journal of Vision, 8(16):2, 1–17, http://www.
journalofvision.org/content/8/16/2, doi:10.1167/8.
16.2. [PubMed] [Article]

Hubert, B., Wicker, B., Moore, D. G., Monfardini, E.,

Duverger, H., Da Fonseca, D., et al. (2007). Brief
report: Recognition of emotional and non-emo-
tional biological motion in individuals with
autistic spectrum disorders. Journal of Autism &
Developmental Disorders, 37(7), 1386–1392.

Iacoboni, M., Lieberman, M. D., Knowlton, B. J.,
Molnar-Szakacs, I., Moritz, M., Throop, C. J., et
al. (2004). Watching social interactions produces
dorsomedial prefrontal and medial parietal
BOLD fMRI signal increases compared to a
resting baseline. Neuroimage, 21(3), 1167–1173.

Johansson, G. (1973). Visual perception of biological
motion and a model for its analysis. Perception &
Psychophysics, 14(2), 201–211.

Kaiser, M. D., & Pelphrey, K. A. (2012). Disrupted
action perception in autism: Behavioral evidence,
neuroendophenotypes, and diagnostic utility.
Developmental Cognitive Neuroscience, 2(1), 25–
35.

Ma, Y., Paterson, H. M., & Pollick, F. E. (2006). A
motion capture library for the study of identity,
gender, and emotion perception from biological
motion. Behavior Research Methods, 38(1), 134–
141.

Manera, V., Schouten, B., Becchio, C., Bara, B. G., &
Verfaillie, K. (2010). Inferring intentions from
biological motion: A stimulus set of point-light
communicative interactions. Behavior Research
Methods, 42(1), 168–178.

Matsuzaki, N., & Sato, T. (2008). The perception of
facial expressions from two-frame apparent mo-
tion. Perception, 37(10), 1560–1568.

Müller, M., Röder, T., Clausen, M., Eberhardt, B.,
Krüger, B., & Weber, A. (2007). Documentation
Mocap Database HDM05. (Tech. Rep. No. CG-
2007-2, ISSN 1610-8892). Universität Bonn, Bonn,
Germany.

Murphy, P., Brady, N., Fitzgerald, M., & Troje, N. F.
(2009). No evidence for impaired perception of
biological motion in adults with autistic spectrum
disorders. Neuropsychologia, 47(14), 3225–3235.

Norman, J. F., Payton, S. M., Long, J. R., & Hawkes,
L. M. (2004). Aging and the perception of
biological motion. Psychology and Aging, 19(1),
219–225.

Oram, M., & Perrett, D. (1994). Responses of anterior-
superior temporal polysensory (STPa) neurons to
‘‘biological motion’’ stimuli. Journal of Cognitive
Neuroscience, 6, 99–116.

Parron, C., Da Fonseca, D., Santos, A., Moore, D. G.,
Monfardini, E., & Deruelle, C. (2008). Recognition
of biological motion in children with autistic

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 9

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

http://www.journalofvision.org/content/9/5/8
http://www.journalofvision.org/content/9/5/8
http://www.ncbi.nlm.nih.gov/pubmed/19757886
http://www.journalofvision.org/content/9/5/8.long
http://www.journalofvision.org/content/8/16/2
http://www.journalofvision.org/content/8/16/2
http://www.ncbi.nlm.nih.gov/pubmed/19146269
http://www.journalofvision.org/content/8/16/2.long

spectrum disorders. Autism: The International
Journal of Research & Practice, 12(3), 261–274.

Pavlova, M., & Sokolov, A. (2000). Orientation
specificity in biological motion perception. Percep-
tion and Psychophysics, 62(5), 889–899.

Pelli, D. G. (1997). The VideoToolbox software for
visual psychophysics: Transforming numbers into
movies. Spatial Vision, 10, 437–442.

Pelphrey, K. A., & Carter, E. J. (2008). Brain
mechanisms for social perception: Lessons from
autism and typical development. Annals of the New
York Academy of Sciences, 1145, 283–299.

Pilz, K. S., Bennett, P. J., & Sekuler, A. B. (2010).
Effects of aging on biological motion discrimina-
tion. Vision Research, 50(2), 211–219.

Poizner, H., Bellugi, U., & Lutes-Driscoll, V. (1981).
Perception of American sign language in dynamic
point-light displays. Journal of Experimental Psy-
chology: Human Perception & Performance, 7(2),
430–440.

Pollick, F. E., Hill, H., Calder, A., & Paterson, H.
(2003). Recognising facial expression from spatially
and temporally modified movements. Perception,
32(7), 813–826.

Pollick, F. E., Paterson, H. M., Bruderlin, A., &
Sanford, A. J. (2001). Perceiving affect from arm
movement. Cognition, 82(2), B51–B61.

Regolin, L., Tommasi, L., & Vallortigara, G. (2000).
Visual perception of biological motion in newly
hatched chicks as revealed by an imprinting
procedure. Animal Cognition, 3, 53–60.

Roether, C. L., Omlor, L., Christensen, A., & Giese, M.
A. (2009). Critical features for the perception of
emotion from gait. Journal of Vision, 9(6):15, 1–32,
http://www.journalofvision.org/content/9/6/15,
doi:10.1167/9.6.15. [PubMed] [Article]

Sumi, S. (1984). Upside-down presentation of the
Johansson moving light-spot pattern. Perception,
13(3), 283–286.

Thurman, S. M., & Lu, H. (2013). Complex interac-
tions between spatial, orientation, and motion cues
for biological motion perception across visual
space. Journal of Vision, 13(2):8, 1–18, http://
www.journalofvision.org/content/13/2/8, doi:
10.1167/13.2.8. [PubMed] [Article]

van Boxtel, J. J., & Lu, H. (2011). Visual search by
action category. Journal of Vision, 11(7):19, 1–14,
http://www.journalofvision.org/content/11/7/19,
doi:10.1167/11.7.19. [PubMed] [Article]

van Boxtel, J. J., & Lu, H. (2012). Signature
movements lead to efficient search for threatening
actions. PLoS ONE, 7(5), e37085.

van Boxtel, J. J. A., & Lu, H. (2013). Impaired global,
and compensatory local, biological motion pro-
cessing in people with high levels of autistic traits.
Frontiers in Psychology, 4, 209.

Vangeneugden, J., Pollick, F., & Vogels, R. (2009).
Functional differentiation of macaque visual tem-
poral cortical neurons using a parametric action
space. Cerebral Cortex, 19(3), 593–611.

Vanrie, J., & Verfaillie, K. (2004). Perception of
biological motion: A stimulus set of human point-
light actions. Behavior Research Methods, Instru-
ments, & Computers, 36(4), 625–629.

Appendix I: Additional explanation
properties and methods

Here we assume that you initialized a Biomotion
object that you named myMO, or an array of Biomotion
objects, that you named myMOs.

Properties

� myMO.Invert ¼ val
Invert the action. 0¼ no (default), 1¼ yes, provided
in val.

� myMO.Scramble ¼ val
Space scramble the action. 0¼ no (default), 1¼ yes.
The start locations of the individual joints will be
randomly relocated within a space defined by
ScrambleWidth, ScrambleHeight, and
ScrambleDepth, and saved in ScrambleOff-
sets (a 3 · nPointLights array). If not defined by
you ScrambleOffsets will be automatically set
(after you set Scramble¼ 1). The size of the space
will be bounded by the maximum positions in x, y,
and z over the entire movie. You can set the size of
the scramble space by entering values for Scram-
bleWidth, ScrambleHeight, and Scramble-
Depth [see Custom scambling in Appendix II].

� myMO.ScrambleDim ¼ ‘xyz’
Determines which dimension should be scrambled.
e.g., myMO.ScrambleDim ¼ ‘xz’, scrambles only
the x and y dimensions.

� myMO.Rotation ¼ val
Rotates the action by the amount specified in val (in
radians), relative to the current rotation.

� myMO.Position3D¼[x,y,z]
The position of the action will be offset by the
amounts specified in [x,y,z].

� myMO.Scale ¼ val
Scale the size of the action. The default value is set
to work relatively well for many applications, but

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 10

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

http://www.journalofvision.org/content/9/6/15
http://www.ncbi.nlm.nih.gov/pubmed/19761306
http://www.journalofvision.org/content/9/6/15.long
http://www.ncbi.nlm.nih.gov/pubmed/23390322
http://www.journalofvision.org/content/13/2/8
http://www.journalofvision.org/content/11/7/19
http://www.ncbi.nlm.nih.gov/pubmed/21709212
http://www.journalofvision.org/content/11/7/19.long

you probably want to resize your actions with this
command. This scaling is relative to the current size,
so if you call it twice in a row, the actor will increase
twice. e.g., Calling BM.Scale ¼ 2; and then again
BM.Scale ¼ 2; will result in a four times bigger
actor.

� myMO.Loop ¼ val
Set val to 1 if you want to Loop the action once
you reach the last frame (default is 0). Setting Loop
to 1 will cause GetFrame to return to the first
frame after you have reached the last frame.

� myMO.LimitedLife ¼ val
Set val to 1 if you want a limited lifetime action
(default is 0). After setting LimitedLife to 1, the
default settings will produce an action with a
lifetime of 1 frame. The markers will be drawn along
the skeleton provided in myMO.Skeleton. By just
providing the skeleton, and setting LimitedLife
to 1, one obtains the central condition used by
Beintema and Lappe (2002). To change the settings
for limited lifetime stimuli, use SetLimitedLife
Parameters.

� myMO.PhaseScramble ¼ val
val can be 0, 1, 2 or ‘rescramble’, or 3. 1 will
scramble the phase of each joint individually,meaning
that each joint will start at a random frame within the
movie. 0 will remove the scrambling. 2 and ‘re-
scramble’ will rescramble. When you call
PhaseScramble¼1 multiple times in a row, each
joint will be offset again by the values already set in
PhaseOffsets (without redrawing them). When
you call PhaseScramble¼2, PhaseOffsets
will be redrawn first, and then these values will be
applied to the currently present offsets. Setting 3 will
force the use of user-defined PhaseOffsets, when
they are set after setting PhaseScramble¼1. Note:
PhaseScramble will change the values in Norm-
JointsInfo (unlike Scramble, Invert, and Rota-
tion). Reset everything by calling
myMO.PhaseScramble¼0.

� myMO.Skeleton ¼ val
This property is used to describe the skeleton along
which markers should be drawn for limited lifetime
stimuli. Each limb segment should be entered
separately. If one wants to draw two arms from the
biomotion object, and one arm runs from joint 2, to
3, to 4, and the other arm runs from 5, to 6, to 7,
then one should enter: myMO.Skeleton¼[2 3; 3
4; 5 6; 6 7];

Methods

� myMO.GetFrame(frame_nmbr [,joints])
GetFrame will return a [3 · nPointLights]
array with the [x, y, z] positions of the joints at

the frame provide by an integer: frame_nmbr. If
you only want the information from specific joints,
you can provide an array with those joint indices
in joints.
If myMO is an array of Biomotion objects, and

frame_nmbr is a single integer, GetFrame will
return the joint information in frame frame_nmbr
for all objects in myMO. If frame_nmbr is an
array of the same length as myMO, then GetFrame
will return the joint information in the frame
numbers provided for each object. So if myMO is of
length 2, and you call myMO.GetFrame([1 30]),
the joint information of the first object in myMO will
be returned for frame 1, and for frame 30 for the
second object in myMO. Similarly, you can ask for
different joints for the different objects: e.g., my-
MO.GetFrame([1 30], [1 2 3; 6 7 8]), will
return joint 1, 2, and 3 on frame 1 for the first object
in myMO, and joint 6, 7, and 8 on frame 30 for the
second object.

� myMO.RotatePath(val)
RotatePath rotates the entire movie by the amount
specified in val (in radians). The rotation axis is
defined in myMO.RotationAxis. This function
achieves the same as calling myMO.Rotation¼val,
but does it on all frames simultaneously and changes
NormJointsInfo. myMO.Rotation performs
the rotation on each frame as you call GetFrame.
ThusRotatePathmaybe faster in certain situations;
it is also useful if it turns out that your input file
contains the joint information upside-down. To put
the action upright, set myMO.RotationAxis¼[10
0] (rotation around x-axis), and thenmyMO.Rotate
Path(pi).

� myMO.SetRotation(val)
With SetRotation one can (re)set the rotation to
a specific angle. The difference between myMO.Set
Rotation(val) and myMO.Rotation¼ val is
that the former sets the rotation to val, while the
latter increases the current rotation angle by the
value specified in val.

� myMO.Smoothloop()
Smoothloop may help in smoothing the transition
when looping an action. Sometimes the looping of
the movie is not perfect (the transition from the last
frame back to the first is not smooth). Smooth-
loop will calculate the linear distance between the
position of each joint in the first and last frame, and
then add an increasingly bigger offset to successive
frames to completely cancel out the spatial differ-
ences by the last frame.

� myMOs.SetAll(‘Option’,val [,spec])
When you have initialized several Biomotions in one
array, you can use this command to set an option to
a certain value for all (or a selection of) Biomotions

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 11

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

in that array. There are three ways to use this
function.

1. myMOs.SetAll(‘Scramble’, 1), will set
Scramble to 1 for all Biomotions in myMOs.

2. You can also specify an array of the same length
as myMOs, but with different values for each
Biomotion object. e.g., if you have four Bio-
motion objects in myMOs, then
myMOs.SetAll(‘Scramble’, [0 1 1 0])
will set the first and fourth to Scramble ¼ 0,
then the second and third to Scramble ¼ 1.

3. You can also set specific items (specified in
spec) to a specific value (specified in val). For
example, to obtain the same results as in the
second example you could call
myMOs.SetAll(‘Scramble’, 1, [2 3]).

� myMOs.SetAllVect(‘Option’, val [,
spec])
Works as SetAll, but val is a vector. Therefore,
to use option 2 and 3 as explained for SetAll,
make a 2-D array with the rows containing the
different vectors for the different actions. e.g., for
option 3, type myMOs.SetAllVect(‘posi-
tion3D’, [200 0 0; 300 0 0], [2 4]), which
will offset the second item by [200 0 0] and the
fourth item by [300 0 0].

� myMO.SaveData3D(‘outputname’)
Saves the JointsInfo data in the Biomotion class
in the format ‘‘data3d.’’ It is the default data that the
Biomotion class accepts. You can afterwards make a
new Biomotion object with this data: newBM ¼

BioMotion(‘outputname’). This save option
may be useful when you have created a new action
(e.g., by morphing two actions, or otherwise).

� myMO.ScramblePositions()
ScramblePositions will rescramble the marker
locations based on the values of ScrambleWidth,
ScrambleHeight, and ScrambleDepth. These
values need to be set before this function is called in
order to use custom values for the bounding box for
scrambling. If you do not set these values first, then
these values are set automatically, and the call will
be superfluous.

� myMO.SetLimitedLifeParameters()
By default the settings for limited lifetime stimuli will
be: maxlife¼1, ndots¼nPointLights, and
type¼‘async’. If no skeleton is provided, the
individual joints will be used (hence the default for
ndots). Note, that this will not lead to a limited
lifetime stimulus on the screen, because each joint
has a lifetime of 1, but will also be immediately
redrawn (because by default ndots equals the
number of limb segments, which is the number of
joints in this case). To get a real limited lifetime
stimulus one will have to provide a skeleton (so dots
can be drawn along the limb segments), or decrease
the number of displayed dots (in this case the dots
will have a limited lifetime, and will be drawn on the
joints). To change the settings for limited lifetime
stimuli myMO.SetLim-
itedLifeParameters can be used as follows. To
change, e.g., the number of dots to four per frame,
and the lifetime to six frames: myMO.SetLimit-
edLifeParameters(‘ndots’, 4, ‘max-
life’, 6);

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 12

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

Appendix II: Simple programs

First example

This program will generate a biological motion action, and displays it using MATLAB and PsychToolbox.
We assume here that you have a folder in the current directory called ‘‘actions’’ that contains all your motion-
capture files. We also assume that one of those files is called 60_06.txt, which, even though it has the extension
txt, is really a bvh file.

Note that we called bm¼BioMotion(combiname, ‘Filetype’, ‘bvh’); with the property Filetype set to
bvh. This was done because 60_06.txt is not in data3d format, nor in vanrie format (the two formats using txt), but
in bvh format.

Now, if we decide that we want to scramble the figure we just add one line after bm.Loop ¼ 1, namely:
bm.Scramble¼ 1;
Similarly, if we want to invert the action we add:
bm.Invert¼ 1;

Selecting joints to display

If we want to display only the following joints: [17 19 20 21 26 27 28 3 4 5 8 9 10], we can do that in two ways. We can
change the initialization (which will make the for-loop faster, but means that only those joint will be available after
initialization, and the selection cannot be expanded):

bm¼BioMotion(‘60_06.txt’, ‘Filetype’, ‘bvh’, ‘Selectjoints’, [17 19 20 21 26 27 28 3 4
5 8 9 10]);

Alternatively, we only ask for certain joints when we draw the dots in the buffer (this is slightly slower, but it
allows you to select other joints in another call to GetFrame). Replace bm.GetFrame(fr) with:

bm.GetFrame(fr, [17 19 20 21 26 27 28 3 4 5 8 9 10])

Second example

Now we want to have a display with two identical actions, one on each side of the display. Each should also rotate in
depth, andoneof them is scrambled. (Suchadisplaycouldbeused indevelopmentalpsychology research, in apreferential
looking task.)

Code for Example 1. Note that the functions SetScreen and SetProjection are not standard MATLAB functions but can be

downloaded at www.jeroenvanboxtel.com/software.

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 13

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

http://www.jeroenvanboxtel.com/software

Custom scrambling

Spatial scrambling

If the user wants to change the default dimensions of the scrambling, the user can set the dimensions
manually before setting Scramble ¼ 1, e.g.:

bmarray(2).ScrambleWidth¼ 50;
bmarray(2).ScrambleHeight¼ 100;
bmarray(2).ScrambleDepth¼ 50;
bmarray(2).Scramble¼ 1;
If the dimensions are changed after ScrambleWidth, ScrambleHeight, and ScrambleDepth are set,

Scramblewill have to be set back to 0 and then to 1 (in order to rescramble, and for the newdimensions to take effect).
Alternatively, you can call ScramblePositions after setting ScrambleWidth, etc:

bmarray(2).ScramblePositions;
It is also possible to input the desired scrambling amounts. This can be done by calling bmarray(2).

ScrambleOffsets¼ arraywithpositions. The positions in arraywithpositions are the 3-D starting
coordinates, relative to [0 0 0]. In order to set ScrambleOffsets it is important to set Scramble to 1, before
setting ScrambleOffsets, otherwise the input is overwritten by the default scrambling function:

bmarray(2).Scramble¼ 1;

Code for Example 2. Note that the functions SetScreen and SetProjection are not standard MATLAB functions but can be

downloaded at www.jeroenvanboxtel.com/software.

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 14

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

http://www.jeroenvanboxtel.com/software

bmarray(2).ScrambleOffsets¼ arraywithpositions;

Phase Scrambling

Phase scrambling can also be set manually. The user will need to define PhaseOffsets. In order for it to take
effect the user needs to set PhaseScramble¼ 1 after PhaseOffsets is set, e.g.:

bmarray(1).PhaseOffsets¼ [100 100 100 200 200 200 400];
bmarray(1).PhaseScramble¼ 1;
If PhaseScramble was already set to 1 before setting PhaseOffsets, the user can call bmarray(1).

PhaseScramble¼3 afterwards. This call will overwrite the old phase scrambling and use the new user-defined values.
bmarray(1).PhaseScramble¼ 1;
[. . .other code. . .]
bmarray(1).PhaseOffsets¼ [100 100 100 200 200 200 400];
bmarray(1).PhaseScramble¼ 3;

Third example

In this example we display two identical actions.One of them is a limited lifetime stimulus, with the dots drawn along a
user-provided skeleton. The skeleton for the limited lifetime action in this example is defined according to the drawing in
Figure A1. The example also shows a limited lifetime stimulus in which the dots are redrawn on the joints. This happens
when no skeleton is provided.

Code for Example 3. Note that the functions SetScreen and SetProjection are not standard MatLab functions but can

be downloaded at www.jeroenvanboxtel.com/software.

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 15

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

http://www.jeroenvanboxtel.com/software

Appendix III: Motion capture
databases

Here we provide several Motion capture databases
that can be accessed online. See http://www.
jeroenvanboxtel.com/MocapDatabases.html for an
updated list:

� Pollick lab Body Movement Library (Ma et al.,
2006) http://paco.psy.gla.ac.uk/index.php?option¼
com_jdownloads&view¼viewcategories&Itemid¼62

� Leuven Action Database (Vanrie & Verfaillie, 2004)
http://ppw.kuleuven.be/english/lep/resources/action

� Carnegie Mellon Mocap Database http://mocap.cs.
cmu.edu

� Human Motion Database (Guerra-Filho & Biswas
2012) http://smile.uta.edu/hmd/hmd.htm

� OptiTrack Samples http://www.naturalpoint.com/
optitrack/downloads/

� ICS Action Database http://www.ics.t.u-tokyo.ac.
jp/action/

� HumanEva http://vision.cs.brown.edu/humaneva/
� Motion Capture Database HDM05 (Müller et al.,

2007) http://www.mpi-inf.mpg.de/resources/
HDM05/

� Mocapdata http://www.mocapdata.com/
� Human Identification at a Distance http://www.cc.

gatech.edu/cpl/projects/hid/
� ACCAD database http://accad.osu.edu/research/

mocap/mocap_data.htm
� Movlab http://movlab.ulusofona.pt/cms/index.

php?option¼com_content&view¼article&id¼
160&Itemid¼104&lang¼en

Figure A1. In this example we assume a 13-jointed action. The joints are in the order as defined in the figure. In this example we will

draw markers along the limb segments indicated by the thick black lines.

Journal of Vision (2013) 13(12):7, 1–16 van Boxtel & Lu 16

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932808/ on 12/21/2015

http://www.jeroenvanboxtel.com/MocapDatabases.html
http://www.jeroenvanboxtel.com/MocapDatabases.html
http://paco.psy.gla.ac.uk/index.php?option=com_jdownloads&view=viewcategories&Itemid=62
http://paco.psy.gla.ac.uk/index.php?option=com_jdownloads&view=viewcategories&Itemid=62
http://paco.psy.gla.ac.uk/index.php?option=com_jdownloads&view=viewcategories&Itemid=62
http://paco.psy.gla.ac.uk/index.php?option=com_jdownloads&view=viewcategories&Itemid=62
http://ppw.kuleuven.be/english/lep/resources/action
http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
http://smile.uta.edu/hmd/hmd.htm
http://www.naturalpoint.com/optitrack/downloads/
http://www.naturalpoint.com/optitrack/downloads/
http://www.ics.t.u-tokyo.ac.jp/action/
http://www.ics.t.u-tokyo.ac.jp/action/
http://vision.cs.brown.edu/humaneva/
http://www.mpi-inf.mpg.de/resources/HDM05/
http://www.mpi-inf.mpg.de/resources/HDM05/
http://www.mocapdata.com/
http://www.cc.gatech.edu/cpl/projects/hid/
http://www.cc.gatech.edu/cpl/projects/hid/
http://accad.osu.edu/research/mocap/mocap_data.htm
http://accad.osu.edu/research/mocap/mocap_data.htm
http://movlab.ulusofona.pt/cms/index.php?option=com_content&view=article&id=160&Itemid=104&lang=en
http://movlab.ulusofona.pt/cms/index.php?option=com_content&view=article&id=160&Itemid=104&lang=en
http://movlab.ulusofona.pt/cms/index.php?option=com_content&view=article&id=160&Itemid=104&lang=en
http://movlab.ulusofona.pt/cms/index.php?option=com_content&view=article&id=160&Itemid=104&lang=en
http://movlab.ulusofona.pt/cms/index.php?option=com_content&view=article&id=160&Itemid=104&lang=en
http://movlab.ulusofona.pt/cms/index.php?option=com_content&view=article&id=160&Itemid=104&lang=en
http://movlab.ulusofona.pt/cms/index.php?option=com_content&view=article&id=160&Itemid=104&lang=en

	Introduction
	Definitions
	Getting started
	Supported file formats
	Initialization
	t01
	Making arrays of Biomotion objects
	Copying Biomotion objects
	Toolbox properties
	Toolbox methods
	t02
	Troubleshooting
	t03
	Performance increase
	Limitations
	Final remarks
	Beintema1
	Bertenthal1
	Blake1
	Brainard1
	Carter1
	Chang1
	Chouchourelou1
	Dittrich1
	Dittrich2
	Fox1
	Freitag1
	GuerraFilho1
	Grossman1
	Herman1
	Herrington1
	Hirai1
	Hubert1
	Iacoboni1
	Johansson1
	Kaiser1
	Ma1
	Manera1
	Matsuzaki1
	Muller1
	Murphy1
	Norman1
	Oram1
	Parron1
	Pavlova1
	Pelli1
	Pelphrey1
	Pilz1
	Poizner1
	Pollick1
	Pollick2
	Regolin1
	Roether1
	Sumi1
	Thurman1
	vanBoxtel1
	vanBoxtel2
	vanBoxtel3
	Vangeneugden1
	Vanrie1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'AP_Press'] Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

