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The human ability to flexibly reason using analogies with domain-general content depends on mechanisms
for identifying relations between concepts, and for mapping concepts and their relations across analogs.
Building on a recent model of how semantic relations can be learned from nonrelational word embeddings,
we present a new computational model of mapping between two analogs. The model adopts a Bayesian
framework for probabilistic graph matching, operating on semantic relation networks constructed from
distributed representations of individual concepts and of relations between concepts. Through comparisons
of model predictions with human performance in a novel mapping task requiring integration of multiple
relations, as well as in several classic studies, we demonstrate that the model accounts for a broad range of
phenomena involving analogical mapping by both adults and children. We also show the potential for
extending the model to deal with analog retrieval. Our approach demonstrates that human-like analogical
mapping can emerge from comparison mechanisms applied to rich semantic representations of individual
concepts and relations.
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Human thinking is based not only on a vast pool of individual
concepts, but also on relations between concepts. An explicit
relation connects multiple entities, each of which fills a specific
role (e.g., the relation hit has two roles, which might be instantiated
by “hammer hits nail”). Relations greatly extend the potential to go
beyond similarity of individual entities to find resemblances
between situations based on analogy, a form of reasoning routinely
used in everyday communication. Thus “hammer hits nail” is
analogous to “meteor hits planet”: a meteor plays the same role
as a hammer, and a planet the same role as a nail, even though the
corresponding entities are very dissimilar. As a more colorful
example, a newspaper article describing the difficulty of using a
vaccine reservation website during the coronavirus disease

(COVID-19) pandemic quoted a user’s complaint that, “This web-
site is as dumb as a box of hammers, and as useful as a paper teapot”
(Lopez, 2021). Such analogical metaphors call attention to impor-
tant connections between dissimilar concepts so as to highlight core
similarities in a creative way. Analogy plays an important role in
many creative human activities, including scientific discovery
(Dunbar & Klahr, 2012), engineering design (Chan & Schunn,
2015), mathematics education (Richland et al., 2007), and metaphor
comprehension (Holyoak, 2019; Holyoak & Stamenković, 2018).
For reviews of relational processing in humans, see Gentner (2010),
Halford et al. (2010), and Holyoak (2012); and for a review of its
neural substrate see Holyoak and Monti (2021).

In general, analogical reasoning serves to transfer knowledge
from a familiar and better-understood source analog to a more novel
target analog. Analogical reasoning can be decomposed into multi-
ple subprocesses (Holyoak et al., 1994): retrieval of one or more
relevant source analogs given a target, mapping to identify system-
atic correspondences between elements of a source and target,
inference to generate new conjectures about the target based on
its mapping with the source, and schema induction to form a more
abstract representation capturing commonalities shared by the
source and target. These subprocesses are interrelated, with mapping
considered to be the pivotal process (Gentner, 1983). Mapping may
play a role in retrieval, as mapping a target analog to multiple
potential source analogs stored in memory can help identify one or
more that seem promising; and the correspondences computed by
mapping support subsequent inference and schema induction.
Because of its centrality to analogical reasoning, the present paper
focuses on the process of mapping between two analogs. We also
consider the possible role that mapping may play in analog retrieval.

Computational Approaches to Analogy

Computational models of analogy have been developed in both
artificial intelligence (AI) and cognitive science over more than half
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a century (for a recent review and critical analysis, see Mitchell,
2021). These models differ in many ways, both in terms of basic
assumptions about the constraints that define a “good” analogy for
humans, and in the detailed algorithms that accomplish analogical
reasoning. For our present purposes, two broad approaches can be
distinguished. The first approach, which can be termed representa-
tion matching, combines mental representations of structured
knowledge about each analog with a matching process that com-
putes some form of relational similarity, yielding a set of corre-
spondences between the elements of the two analogs. The structured
knowledge about an analog is typically assumed to approximate the
content of propositions expressed in predicate calculus; for example,
the instantiated relation “hammer hits nail” might be coded as hit
(hammer, nail). This type of representation requires a symbol to
specify the relation R, a separate representation of its arguments
(roles) a1, a2 : : : an, and a set of bindings between relation and
arguments (thereby distinguishing “hammer hits nail” from “nail
hits hammer”; Halford, Wilson, et al., 1998). Multiple propositions
can be linked by shared arguments [Kintsch, 1988; e.g., hit (ham-
mer, nail), enter (nail, wall)], or by higher-order relations (Gentner,
1983) that take one or more propositions as arguments [e.g., cause
(hit (hammer, nail), enter (nail, wall))]. Many analogy models have
represented analogs using classical symbolic representations that
directly correspond to predicate-calculus notation (Falkenhainer
et al., 1989; Forbus et al., 1995, 2017; Holyoak & Thagard,
1989; Keane & Brayshaw, 1988; Thagard et al., 1990; Winston,
1980); others have adopted specialized neural codes (e.g., tensor
products or neural synchrony) that can capture both the structure and
information content of propositions (Doumas et al., 2008; Halford,
Bain, et al., 1998; Hummel & Holyoak, 1997, 2003).
Taking structured representations of individual analogs as inputs,

representation-matching models use some form of similarity-based
algorithm to identify correspondences. For models based on explicit
symbolic representations (e.g., Falkenhainer et al., 1989; Holyoak &
Thagard, 1989; Winston, 1980), analogical mapping can be viewed
as a form of graph matching, where each individual analog is
encoded as a structured graph with labeled nodes and edges.
Mapping involves the creation of matches between elements of
source and target propositions at multiple hierarchical levels (e.g.,
matches between objects, between relations, and between proposi-
tions). Classical symbolic representations code relations as atomic
elements, which do not capture degrees of similarity (e.g., the
symbol for the relation harm is no more similar to that for injure
than that for heal). To avoid combinatorial explosion (which would
arise if any element could match any other), matching of relations is
typically restricted to those that are identical or closely connected in
a predefined taxonomy via common superordinates (e.g., Forbus
et al., 1995; Thagard et al., 1990; Winston, 1980). These restrictions
limit the flexibility of classical symbolic models (Hofstadter &
Mitchell, 1994). Models that express propositional content in
distributed neural codes allow greater flexibility in matching rela-
tions that are similar but not identical, and can also find plausible
matches between predicates with different numbers of arguments
(e.g., matching a large animal to the larger of two animals;
Hummel & Holyoak, 1997).
Analogymodels in the broad tradition of representation matching,

such as the Structure Mapping Engine (SME; Falkenhainer et al.,
1989), which is based on classical symbolic representations;
Structured Tensor Analogical Reasoning (STAR; Halford,

Bain, et al., 1998), which is based on tensor products; and Learning
and Inference with Schemas and Analogies (LISA; Hummel &
Holyoak, 1997, 2003), and the closely-related Discovery Of Rela-
tions by Analogy (DORA; Doumas et al., 2008), which are based on
neural synchrony, capture many important aspects of human ana-
logical reasoning. Despite their important differences, all of these
models conceive of analogical reasoning in terms of a comparison
process applied to complex knowledge representations designed to
capture the structure of predicates and their associated bindings of
entities into roles. These models, like humans, operate in a domain-
general manner. They are able to solve analogies taken from stories
and problems with open-ended semantic content, such as the
Rutherford–Bohr analogy between planetary motion and atomic
structure, or a story about military tactics that suggests an analogous
solution to a medical problem (Gick & Holyoak, 1980). Also like
humans, these models do not require extensive direct training on
analogy problems in the target domain, and can yield what is termed
“zero-shot learning”: generalization to a new type of problem
without prior examples of that type.

But despite their notable achievements, models based on
representation matching have been handicapped by the lack of a
domain-general, automated process for generating the symbolic
representations required as their inputs. In principle, these repre-
sentations are viewed as the products of perception (for visual
analogies) or of language comprehension (for analogies between
texts). But in the absence of full computational models of how either
perception or comprehension might yield structured knowledge
representations, the inputs to analogy models have typically been
hand-coded. At a theoretical level, this limitation leads to the danger
of excessive “tailorability” (Forbus et al., 2017): modelers may
assume the existence of input representations that dovetail with their
favored matching algorithm (e.g., positing “helpful” invariant fea-
tures, identical relations, or higher-order propositions). Within
circumscribed domains, significant progress has been made in
automating the formation of representations suitable as inputs to
SME (e.g., Forbus et al., 2017; Lovett & Forbus, 2017); and the
DORA model is able to learn predicate-argument structures that
provide inputs to LISA (Doumas et al., 2008, 2022). Nonetheless,
representation-matching models have yet to demonstrate the ability to
form structured inputs that enable analogical reasoning for open-
ended domains based on perceptual or linguistic inputs. At a practical
level, without automated procedures for forming the requisite repre-
sentations, it is prohibitively labor-intensive to hand-code large
datasets so as to enable analogical reasoning by machines.

The second major approach to computational modeling of anal-
ogy, which can be termed end-to-end learning, is a direct application
of the type of deep learning that is at the current forefront of AI. This
approach, which avoids hand-coding altogether, builds on deep
neural networks that support training from raw input stimuli (e.g.,
image pixels, or words in a text) to a final task in an end-to-end
manner. Learning in these networks is typically guided by mini-
mizing errors in performing a particular task. This approach has
moved beyond tasks involving pattern recognition (such as object
classification), for which deep learning has achieved great success,
to reasoning tasks. From this perspective, analogy is viewed as a task
for which a deep neural network can be trained end-to-end by
providing massive data consisting of analogy problems.

This approach has been applied with some success to solving
visual analogies, notably problems inspired by Raven’s Progressive
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Matrices (RPM; Raven, 1938), a variant of formal analogy problems
based on matrices formed from geometric patterns. After extensive
training with RPM-like problems, deep neural networks have
achieved human-level performance on test problems with similar
basic structure (Hill et al., 2019; Santoro et al., 2018; Zhang et al.,
2019). Rather than aiming to create explicit relational representa-
tions that approximate predicate calculus, end-to-end learning forms
representations consisting of complex conjunctions of features
distributed across a multilayer network. There is no separable
process of assessing the similarity of the two analogs. Rather,
deep learning creates representational layers culminating in a final
decision layer that selects or generates the best analogical comple-
tion. That is, learned representations of analogs are directly linked to
the task structure in which they are used.
End-to-end learning models represent the current highwater mark

in automated analogical inference, as hand-coding of inputs is
entirely avoided. However, these AI systems appear quite implau-
sible if interpreted as psychological models. First, their success
depends on datasets of massive numbers of RPM-like problems
(e.g., 1.42 million problems in the Procedurally GeneratedMatrices;
PGM dataset, Barrett et al., 2018; and 70,000 problems in the
Relational and Analogical Visual rEasoNing; RAVEN dataset,
Zhang et al., 2019). For example, Zhang et al. (2019) used
21,000 training problems from the RAVEN dataset, and 300,000
from the PGM dataset. This dependency on direct training in a
reasoning task using big data makes the end-to-end learning
approach fundamentally different from human analogical reasoning.
When the RPM task is administered to a person, “training” is limited
to general task instructions. Because the task is intended to provide a
measure of fluid intelligence—the ability to manipulate novel
information in working memory (Snow et al., 1984)—extensive
pretraining on RPM problems defeats the entire purpose of the test.
Second, the generalization ability of current end-to-end learning

models is limited to test problems that are very similar in content and
structure to the training problems. If the content of analogy problems
deviates even modestly from that used in the training examples,
generalization falls well short of human performance (e.g., Ichien,
Liu, et al., 2021). The end-to-end approach thus fails to account for
the human ability to achieve zero-shot learning by analogical
transfer. Arguably, this shortcoming is directly related to the fact
that end-to-end deep learning does not create explicit relational
representations (Doumas et al., 2022).

Eduction of Relations

In the present paper we describe a novel computational model of
analogical mapping that addresses the basic question of how
inputs to the reasoning process can be generated. Our model is
in the tradition of representation matching (making central use of
graph matching), but differs from previous proposals in its
approach to relation representation. Our approach is not rooted
in the logic of predicate calculus, but rather in the seminal theories
of human intelligence formulated a century ago. Consider a simple
verbal analogy in the proportional format (A:B :: C:D) often used
on intelligence tests, for example, hot : cold :: love : hate. We can
think of the A:B pair as the source and C:D as the target. The first
thing to note is that the problem statement does not specify any
relations. Rather, as Charles Spearman observed, the initial step in
solving the analogy is to perform what he termed the eduction of

relations: in his own (rather awkward) words, “The mentally
presenting of any two or more characters (simple or complex)
tends to evoke the knowing of relation between them” (Spearman,
1923, p. 63; italics in original). That is, the reasoner must first
mentally “fill in the blanks” in the problem as posed, by retrieving
or computing the relation between A and B, and that between C and
D. Once these relations have been educed, the reasoner can
perform a second basic step, the eduction of correlates: assessing
the similarity of the A:B and C:D relations to determine whether
they are analogous.

For verbal problems, Spearman’s concept of “relation” refers to
the semantic relation between concepts denoted by words. Semantic
relations are more than mere associations; for example, hot : cold ::
love : adore consists of two word pairs that are each strongly
associated via a salient relation, but the problem does not form a
valid analogy because the A:B and C:D relations mismatch. At the
same time, semantic relations do not necessarily correspond in a
direct way to “predicates” as typically incorporated into analogy
models. The canonical examples of relations as predicates center on
verbs (and other linking words), as in hit (hammer, nail). But at the
level of semantic relations, one can represent “hammer hits nail” by
identifying relations for the three pairs of content words: hammer :
hit, hit : nail, hammer : nail. Verbs, like nouns, denote concepts that
enter into pairwise semantic relations—they are not the semantic
relations themselves. In the present paper we will refer to verbs and
similar linking words as “predicates” when we wish to distinguish
such words from semantic relations.

Proportional analogies were once a focus of psychological work
on analogy (e.g., Sternberg, 1977), but fell into disfavor. More
recent models in the tradition of representation matching have
bypassed proportional analogies on the grounds they are too
simplistic—they apparently require just the matching of single
relations, rather than finding a rich mapping between systems of
relations (Gentner, 1983). In fact, proportional analogies do not
require the reasoner to perform a mapping process at all: the format
directly specifies the correspondences (A→ C, B→ D), and validity
depends solely on the similarity of the educed A:B and C:D
relations. Yet paradoxically, these “simplistic” analogies pose a
basic problem for the sophisticated computational models that can
deal with analogies between stories and word problems. The
computational models of recent decades require relation-centered
propositions as inputs—which is exactly what proportional analo-
gies do not provide. Models that have addressed proportional
analogies have simply assumed that relations between word pairs
are prestored in long-term memory, ready to be retrieved (e.g.,
Morrison et al., 2004). For a simple case such as hot : cold :: love :
hate, it is indeed plausible that people have prestored the relevant
relation, opposite-of. But people can also solve analogies based on
less familiar relations, as inmask : face :: alias : name. In such cases
reasoners may not have considered the relations between the word
pairs prior to receiving the analogy problem. Rather, relations must
be educed from representations of the concepts being related. A
model that accomplishes the eduction of relations between paired
concepts would at least partially address the problem of how
relational representations of analogs can be formed by an autono-
mous reasoner, reducing the need for hand-coding by the modeler.
However, modeling the eduction of relations presupposes finding an
answer to a yet more basic question: How are semantic relations
acquired in the first place?
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Plan of the Paper

In the remainder of this paper we present and test a new model of
analogical mapping over a range of verbal reasoning tasks varying in
complexity. The model operates on semantic relation networks—
graphs in which feature vectors capture the rich semantics both of
individual concepts (nodes in graphs) and of pairwise relations
between concepts (edges). The proposed mapping model serves as a
module in a broader system, making use of the outputs of additional
modules that address the acquisition and eduction of relations, as
well as text processing. In the spirit of other recent computational
models of human cognition (e.g., Battleday et al., 2020), we build on
work integrating developments in deep learning with theoretical
ideas from cognitive science.
The inputs to the mapping model are two sets of concepts,

respectively selected from the source and target analogs. For
analogies based on texts, we explore the potential for using AI
algorithms for natural language processing (NLP) to aid in selection
of key concepts. The model adopts rich semantic representations
(embeddings) for individual concepts, partially automates the crea-
tion of skeletal relational structure for analogs, and then applies
Bayesian probabilistic inference to find correspondences between
key concepts in each analog by maximizing the similarity between
two analogs under the constraint of favoring isomorphic mappings.
Mapping in the proposed model depends on semantic relations of
the sort considered by Spearman (1923), but does not require, nor
directly operate on, complex hierarchies of propositions. The model
is domain-general, and does not require explicit training in solving
analogy problems within any particular domain. The aim is to
capture the power of representation matching to produce zero-
shot learning by analogy, while at the same time pursuing a central
goal of end-to-end learning: to automate the creation of representa-
tions that provide the proximal inputs to analogical mapping.
Because the overall model is modular in nature, some compo-

nents could readily be altered or replaced. In dealing with issues
related to text processing, we make use of NLP algorithms that have
proven helpful in work to date, but these are clearly imperfect and
not intended to be definitive. The module that creates vector
representations of word meaning might be replaced by some other
machine-learning algorithm. The module we use to create vector
representations of relation meanings is also subject to revision. Here
we compare one model (an extension of our own earlier work) with
an alternative baseline model, as well as with additional variants
created by systematic ablations (see Supplemental Information).
The central contribution of the present paper is the proposed
mapping module, which takes vector representations of concepts
and relations as inputs and yields analogical correspondences as
outputs. This mapping model would operate in essentially the same
manner if the modules that create its inputs were varied.
The scope of the model as presented here is limited to verbal

analogies (although a similar approach may be applicable to visual
analogies; Ichien, Liu, et al., 2021). We believe the mapping model
could in principle be instantiated in a neural network; however, to
maximize its generality we provide a Bayesian formulation based on
probabilistic inference. We will first describe the creation of inputs
to the mappingmodel: vector representations of individual concepts,
and of semantic relations between concepts. We then focus on the
mapping model itself. We apply the model to a novel analogy task
that requires the eduction and integration of multiple semantic

relations, as well as to a series of classic experiments drawn
from the analogy literature. In addition to analogical mapping,
we consider how the model could be applied to the problem of
analog retrieval. Our treatment of psychological phenomena is
selective, emphasizing basic findings regarding human judgments
of preferred mappings between analogs, and propensities to retrieve
different types of source analogs in response to a given target analog.

Forming Representations of Word Meanings and
Semantic Relations

A general system for analogical mapping that takes verbal inputs
must accomplish four component tasks: (a) creating representations
of word meanings; (b) learning and then recognizing semantic
relations between words; (c) integrating representations of word
meanings and semantic relations to code complete analogs; and (d)
comparing analogs to generate a set of correspondences between
them. Figure 1 schematizes a set of individual models that operate as
modules to support and perform analogical mapping, applied to a
simple example. The first two tasks are accomplished by versions of
existing models; the latter two tasks are performed by a new model
introduced in the present paper.

Creating Representations of Word Semantic Meanings
Using Word2vec

As the first step toward automating analogical mapping, we adopt
semantic representations of individual words generated by a
machine-learning model, Word2vec (Mikolov et al., 2013). Word2-
vec and similar models based on distributional semantics, such as
Global Vectors (GloVe; Pennington et al., 2014) and Bidirectional
Encoder Representations from Transformers (BERT; Devlin et al.,
2019), have proved successful in predicting behavioral judgments of
lexical similarity or association (Hill et al., 2015; Hofmann et al.,
2018; Pereira et al., 2016; Richie & Bhatia, 2021), neural responses
to word and relation meanings (Huth et al., 2016; Pereira et al.,
2018; Zhang et al., 2020), and high-level inferences including
assessments of probability (Bhatia, 2017; Bhatia et al., 2019) and
semantic verification (Bhatia & Richie, in press). In the simulations
reported here, the semantic meanings of individual concepts are
represented by 300-dimensional embeddings created by Word2vec
after training on a corpus of articles drawn from Google News.

Creating Representations of Relations Between Concepts
Using Bayesian Analogy With Relational
Transformations

The second major component of the overall system is a model that
acquires representations of the semantic relations between concept
words. In keeping with the use of embeddings to represent individual
word meanings, we represent relations as vectors. Once representa-
tions of semantic relations have been created, then in principle it
becomes possible to solve proportional verbal analogies by comput-
ing the similarity of the A:B relation to the C:D relation by some
generic measure, such as cosine similarity. Word2vec itself has been
applied to four-term verbal analogies by computing the cosine
distance between difference vectors forA:B andC:D pairs, a measure
we refer to as Word2vec-diff (Zhila et al., 2013; for a different
distributional approach based specifically on relation terms, see
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Turney, 2008, 2013). Although direct application of Word2vec
achieved some success for analogies based on semantically-close
concepts, it fails to reliably solve problems based on more dissimilar
concepts (Linzen, 2016; Peterson et al., 2020). In the present paper
we use Word2vec-diff as a baseline model, in which relations are
coded in a generic fashion simply as difference vectors.
To move beyond generic difference vectors, Word2vec vectors for

pairs of individual words can be used as inputs to learn representations
of relations in a transformed semantic relation space. Bayesian
Analogy with Relational Transformations (BART; Chen et al.,
2017; Lu et al., 2012; Lu, Wu, et al., 2019), using supervised training
with concatenated word pairs coded by Word2vec embeddings, can
learn to estimate the probability that any pair of words instantiates any
abstract semantic relation drawn from a pool of such relations. This
pool includes 135 abstract relation categories, such as category ( fruit :
apple), similar (house : home), contrast (hot : cold), part-whole
( finger : hand), and case relation (read : book). Semantic relations
betweenwords are then coded byBART as distributed representations
over its set of learned abstract relations. After learning, BART
calculates a relation vector consisting of the posterior probability
that a word pair instantiates each of the learned relations.

Learning in BART

The basic operation of the BART model (described in detail by
Lu, Wu, et al., 2019) is illustrated in Figure 2. BART uses a three-
stage process to learn semantic relations from nonrelational inputs
consisting of positive and negative examples of each target relation
(typically about 20 positive and 70 negative examples). The initial

input (bottom layer of the network sketched in Figure 2, left)
consists of a concatenated vector of length 600 representing a
pair of words (where each word in a pair is coded by a 300-
dimension Word2vec embedding). In its first stage, the model
augments this raw feature vector by (a) computing the difference
in the value of each feature between the two words in a pair, (b)
ordering these differences by magnitude, and (c) creating 600
additional features consisting of the raw features reordered accord-
ing to difference magnitudes. These ranked features will differ for
each word pair used in training. Augmenting the raw semantic
features with ranked features partially mitigates the problem that
across instances, different semantic features may be relevant to a
relation (e.g., love : hate involves features related to emotion,
whereas rich : poor involves features related to wealth); and worse,
the features of word embeddings are typically “entangled” (i.e.,
individual features are not readily interpretable). Difference ranking
places features that generate differences of similar magnitude (and
hence are relatively likely to serve similar semantic functions) into
correspondence, without assuming any prior knowledge about
which individual features are relevant to any relation for any
particular word pair. This first stage culminates in the generation
of a 1,200-dimension augmented feature vector for each word pair,
consisting of the concatenation of raw and ranked feature vectors for
each word in the pair (second layer from bottom in Figure 2, left).

In its second stage, BART applies logistic regression with elastic
net regularization to difference vectors for all features, selecting a
subset of features in the second layer that are most statistically
important in predicting the relation being trained (yielding the third
layer from bottom in Figure 2, left), and estimating the associated
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Figure 1
An Illustration of Analogical Reasoning Based on Semantic Mapping, Using Category Triplets as an Example

Note. From left: Word embeddings (provided by Word2vec) are obtained to represent the semantic meaning for each concept
(keyword); relation vectors (fromBART) are obtained to represent semantic relations instantiated for pairs of concepts. Shades in
the blocks represent different values in vectors. Middle: Unaligned semantic relation networks, in which nodes are individual
concepts and edges are semantic relations between concept pairs, are created for each analog. Word embeddings (illustrated as
gray blocks) are assigned as node attributes and relation vectors (illustrated as blue blocks) are assigned as edge attributes. Right:
Aligned semantic relation networks are generated by performing probabilistic analogical mapping (with PAM) to find mappings
between the concepts in source and target that maximize the combined similarity based on keywords and relations. BART =
Bayesian Analogy with Relational Transformations; PAM = Probabilistic Analogical Mapping. See the online article for the
color version of this figure.
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coefficients. In its third stage, BART uses Bayesian logistic regres-
sion to estimate the weight distribution representing the target
relation R based on the selected features of word pairs for all
training examples. This regression includes a contrast prior derived
from the second stage (i.e., for each feature included in Stage 3, the
initial coefficient for the first word in a pair is set equal to that
estimated in Stage 2, and the initial coefficient for the second word is
set to the negative of that value).

Relation Vectors in BART

As illustrated in Figure 2 (right), BART effectively rerepresents
the relation between two specific concepts as a vector in a new
semantic space (for a related approach see Roads & Love, 2021),
thereby educing the relation between any pair of words. The specific
relation between any two words is thus coded as a distributed
representation. This representation is disentangled in that each
element in the relation vector corresponds to the posterior probabil-
ity that a particular meaningful relation holds between the concepts.
BART’s distributed representations enable the model to generalize
to new word pairs that may be linked by relations on which the
model had not been specifically trained. By comparing the similarity
between relation vectors (assessed by cosine distance), semantic
relation representations derived by BART have been used to solve
verbal analogies in A:B :: C:D format (Lu, Wu, et al., 2019), to
predict human judgments of relation typicality and similarity
(Ichien, Lu, et al., 2021), and to predict patterns of similarity in
neural responses to relations during analogical reasoning (Chiang
et al., 2021).
For the present project, we trained BART by combining two

datasets of semantic relations. The first dataset included 79 specific
relations from a taxonomy of 10 abstract semantic relations (Bejar
et al., 1991; Jurgens et al., 2012), each with at least 20 word pairs
instantiating the same relation. The second dataset (Popov et al.,
2017) provided 56 additional specific relations, each with 12–25

word pairs instantiating the same relation. For each of 135 relations,
BART learns to select semantic features fL′ and infer the weight
distributions w associated with semantic features for each relation
from training data (fL′ , RL) using variational Bayesian methods, as
summarized in the previous section. After learning, BART can
estimate how likely a word pair 〈 f1, f2〉 instantiates a particular
relation Ri using the computation,

PðRi = 1j f 1, f 2Þ =
ð
PðRi = 1jf 1, f 2,wÞPðwjfL′,RLÞdw: (1)

BART then calculates the posterior probability that the word pair
instantiates each of the relations in its pool of 270 learned relations,
resulting in a distributed representation as a relation vector between
two words,Relð f 1, f 2Þ = hPðR1 = 1j f 1, f 2Þ,PðR2 = 1j f 1, f 2Þ, : : : ,
PðRk = 1j f 1, f 2Þi. In addition, BART automatically forms repre-
sentations for the converse of each trained relation. For example, after
learning relation representations for the category-instance relation,
BART can generate representations for the instance-category relation
by swapping the weights attached to features of the two words in a
pair. Hence, BART relation vectors include 270 dimensions, each
encoding the posterior probability of a word pair instantiating a
relation in a repertoire of 270 relations.

Ichien, Lu, et al. (2021) found that in modeling human judgments
of relational similarity, BART’s predictions are improved by apply-
ing a nonlinear power transformation (with the power parameter of
five) to the relation vector. This transformation emphasizes the
contributions of those relations with higher posterior probabilities in
the similarity calculation (“winners take most”). In modeling map-
ping of Category triplets (Simulation 1), a parameter search con-
firmed that a power of five yielded the best fit. According, all BART
vectors used in simulations reported here include this power
transformation.
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Figure 2
Creating Relation Representations Using BART

Note. Left: Schematic illustration of BARTmodel architecture for relation representation. The bottom layer of the BARTmodel is a concatenated input vector
based on the two words in a pair; the top layer indicates the set of learned relations (ellipses indicate additional relations beyond the three illustrated here). After
learning, the semantic relation between any two words is represented as a vector of the posterior probabilities of each learned relation; the relation vector (Rel)
linking love and hate is shown on the top as an illustration. Right: Semantic relations formed by BART generate a transformed (and disentangled) space in which
pairs instantiating similar sets of relations tend to show similar patterns in relation vectors, and hence are located close to one another in the relation space.
BART = Bayesian Analogy with Relational Transformations See the online article for the color version of this figure.
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Role Vectors in BART

Analogical mapping goes beyond judgments of relation similarity
in that a coherent mapping requires not only that individual matched
relations be similar to one another, but also that elements play
corresponding roles across multiple relations (i.e., mapping is
sensitive to the bindings of concepts into relational roles). It is
clear that humans are sensitive to semantic roles in relation proces-
sing. For example, people not only recognize that mammal : dog
instantiates the relation category-instance, but also that mammal
plays the first role (category) rather than the second role (instance).
Hence, role information is linked to relation representations, as
assumed by some previous computational models of analogy (e.g.,
Hummel & Holyoak, 1997). In addition to evaluating an overall
relation, humans are able to evaluate how well entities fill specific
roles in that relation (Popov et al., 2020). Markman and Stilwell
(2001) provided a taxonomy of categories that explicitly distin-
guishes between relational and role-governed categories. A study by
Goldwater et al. (2011, Experiment 3) demonstrated that learning a
novel relational structure (instantiated as a novel verb; e.g., learning
that to cakemeans “to make a cake”) licenses learning of novel roles
(e.g., a caker is “someone who cakes”). This path of acquisition is
consistent with how BART acquires roles: relations are learned first,
then roles are extracted from the learned relations. (In contrast, the
DORA model of Doumas et al., 2008, makes the opposite assump-
tion, that individual roles are acquired first and then combined to
form multiplace predicates.) Although people sometimes detect
role-based categories without explicit instruction (Goldwater et al.,
2016), category labels and analogical comparisons increase general
sensitivity to role-based categories (Goldwater & Markman, 2011).
Moreover, objects occupying the same role in a relation (e.g.,
predator) come to be viewed as more similar to each other overall
(Jones & Love, 2007).
In order to represent bindings of concepts to roles in semantic

relations, which is required to compute systematic mappings, the
version of BART used in the present paper introduces a new
extension: the model includes learned representations of the
relational roles played by individual concepts. BART relation
vectors were augmented with role vectors indicating the probabil-
ity that the first word in a pair fills the first role of the relation.
(Because the relevant probabilities must sum to one across the two
words in a pair, it is sufficient to explicitly represent the probability
for only the first word.) These role vectors were created using the
same training data that was used to train relations in BART. The
first word in each word pair instantiating a relation was treated as a
positive example, and the second word was treated as a negative
example.
Role learning operates on top of BART’s relation learning.

Weighted feature inputs are generated by the elementwise product,
w ∘ f, of the semantic features f selected by BART and its learned
relation weights w in its third stage connecting the top two layers
in Figure 2. Taking weighted feature vectors derived from BART
as the inputs, the model’s Bayesian logistic regression algorithm is
reapplied to learn weight distributions ω for role representations
from training data< fL0,RL >. After learning, the role-based
weight distributions of ω are used to estimate the posterior
probability that the first word f1 in a pair plays the first role in
the ith relation:

Pðri = 1jw ∘ f 1Þ

=
ð
Pðri = 1jw ∘ f 1,ωÞPðωjw ∘ fL0;RL Þdω:

(2)

In the remainder of the paper we use the term “relation vector” as
shorthand for BART’s concatenation of relational and role vectors.
The final relation vectors used in the work reported here consisted of
540 dimensions: 270 posterior probabilities of a word pair instanti-
ating each of the 270 relations BART has acquired, concatenated
with 270 posterior probabilities that the first word in the pair plays
the first role for each of the 270 relations. (Performance comparisons
with models based on reduced vectors are provided in Supplemental
Information.)

Probabilistic Analogical Mapping

Using representations of individual concepts generated byWord2-
vec and semantic relations between pairs of concepts generated by
BART, we have developed a model to accomplish the third and
fourth tasks noted above: forming representations of entire analogs
and then computing a mapping between them. A general model of
analogical mapping that takes two complex analogs as inputs must
capture the human ability to integrate multiple relations (Gentner,
1983; Halford, Bain, et al., 1998). In the example shown in Figure 1,
an ordered sequence of three category concepts (weapon : gun : rifle)
is mapped to a set of scrambled concepts from a different domain
(dog, beagle, and mammal). When the source and target analogs
involve multiple pairwise relations, as in this example, inherent
mapping ambiguities may arise. For example, weapon : gun consid-
ered alone couldmap to eithermammal : dog or dog : beagle, because
all of these pairs instantiate the superordinate-of relation. As we will
show in an experiment reported below, humans can reliably solve
such analogy problems; a comparable requirement to integrate
multiple relations arises in many other relational reasoning para-
digms, such as transitive inference (Halford, Bain, et al., 1998; Waltz
et al., 1999). To resolve ambiguity in local mappings, a reliable
analogy model must assess relation similarities and integrate across
relations based on mapping constraints.

To compute mappings between concepts in analogies involving
multiple relations, we have developed a domain-general model of
Probabilistic Analogical Mapping (PAM). The model combines
graph matching based on an algorithm that performs constraint
satisfaction [similar in spirit to comparison models such as Holyoak&
Thagard’s, 1989, Analogical Constraint Mapping Engine (ACME),
Goldstone’s, 1994, Similarity as Interactive Activation and Mapping
(SIAM) and Goldstone & Rogosky’s 2002, ABSURDIST] with
vector representations of both concepts and relations. PAM operates
on semantic relation networks, a type of graph structure in which
nodes represent individual concepts and edges represent semantic
relations between concepts. (Note that in addition to nouns, “con-
cepts” may include verbs, adjectives, and other words that typically
serve as predicates.) The semantic relation networks created for each
analog (Figure 1, middle) have the form of attributed graphs (in the
terminology of graph matching; Gold & Rangarajan, 1996), because
nodes and edges are assigned numerical attributes, capturing the
semantic meanings of individual concepts and their pairwise relations.
The attribute for each node is the Word2vec embedding of a key
concept word, and the attribute for each edge is the corresponding
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relation/role vector generated by BART (i.e., concepts and relations
are represented in separate feature spaces). Once key concepts have
been specified, semantic relation networks representing individual
analogs are created in an automated fashion, without hand-coding of
either concept meanings or semantic relations.

Mapping Based on Semantic Relation Networks

Using the semantic relation networks created for the source and
target analog, PAM performs analogical mapping using a probabi-
listic approach (Gold & Rangarajan, 1996). Source and target
analogs can be represented as two graphs of semantic relation
networks, g and g′, respectively. A semantic relation network for
the source analog is defined as an attributed graph <N, E, A> where
each nodeN and each edge E is assigned an attribute A. As applied to
verbal analogies, nodes are words for individual concepts and edges
are semantic relations between words. Let i and j be indices of nodes
in the graph. Aii indicates the semantic attribute of the ith concept,
and Aij indicates the relation attribute of the edge between the ith
concept and the jth concept. The target analog can be represented as
graph g′with i′ and j′ as indices of nodes in the graph.Mii′ = 1 if the
ith concept node in the source analog maps to the i′th node in the
target analog, and Mii′ = 0 if the two concepts are not mapped. The
goal of the model is to estimate the probabilistic mapping matrix m,
consisting of elements denoting the probability that the ith node in
the source analog maps to the i′th node in the target analog, mii′ =
P(Mii′= 1). Using a Bayesian approach, given two semantic relation
networks, PAM aims to infer a mapping m between concepts in the
two analogs so as to maximize its posterior probability with the
constraints ∀i

P
i′mii′ = 1, ∀i′

P
imii′ = 1:

Pðmjg, g′Þ ∝ Pðg, g′jmÞPðmÞ: (3)

The likelihood term Pðg, g′jmÞ is determined by the semantic
similarity between concepts and relations weighted by mapping
probability. We define the log-likelihood as

logðPðg, g′jmÞÞ =
X
i

X
j≠i

X
i′

X
j′≠i′

mii′mjj′SðAij,Ai′j′Þ

+ α
X
i

X
i′

mii′SðAii,Ai′i′Þ,
(4)

where S(Aij, Ai′j′) represents the normalized relation similarity
between edge attributes of the relation instantiated by the ith and
jth concepts in one analog and that instantiated by the i′th and j′th
concepts in the other analog, with the constraints of

P
i′,j′ S(Aij,Ai′j′)=

1 and
P

i,j S (Aij, Ai′j′) = 1. S(Aii, Ai′i′) represents the normalized
similarity between node attributes of individual concepts (i.e.,
similarity between the ith concept in one analog and the i′th concept
in the other analog).
The normalization of similarities were implemented using a

bistochastic normalization procedure developed by Cour et al.
(2006). The goal of this normalization procedure is to selectively
weight the influences of particular concepts and relations on map-
ping. Intuitively, this normalization operation decreases the influ-
ence of concepts (nodes) and relations (edges) that are not
discriminative (e.g., those showing indistinguishable similarity to
many concepts/relations in the other analog), and correspondingly
increases the influence of discriminative concepts and relations

(those showing high similarity scores to a small number of con-
cepts/relations but low similarity scores to other concepts/relations
in the other analog). All similarity scores were calculated using
cosine similarity. The parameter α in Equation 4 is a weighting
parameter that controls the relative importance of lexical similarity
(nodes) versus relation similarity (edges) on mapping, with higher
values indicative of greater emphasis on entity-based lexical simi-
larity in comparison to relation similarity. The α parameter allows
PAM to capture psychological evidence that a variety of factors can
alter human sensitivity to relation versus entity-based similarity
(Goldstone et al., 1991; Markman & Gentner, 1993; Vendetti et al.,
2014). The fundamental assumption is that concepts (nodes) and
relations (edges) constitute two separable pools of semantic infor-
mation (entity-based and relation-based) that jointly drive judg-
ments of similarity between analogs.

The prior term in Equation 3 captures generic constraints that
higher prior probability is assigned to deterministic mappings with
the constraints ∀i

P
i′mii′ = 1, ∀i′

P
i mii′ = 1, and is defined with a

parameter β to control the strength of the prior as,

PðmÞ = e
1
β

P
i

P
i′
mii′ log mii′: (5)

To implement the inference in Equation 3, we employ a graduated
assignment algorithm (Gold & Rangarajan, 1996), variants of which
have been applied to matching problems in computer vision (Lu &
Yuille, 2005; Menke & Yang, 2020). The algorithm incorporates
soft assignments in graph matching. A deterministic one-to-one
correspondence constraint requires that a node in one graph must
match to one node in the other graph and vice versa, with the
mapping valuesm either 0 or 1. The graduated assignment algorithm
relaxes this constraint by allowing probabilistic mapping values that
lie in the continuous range [0, 1]. Thematching algorithmminimizes
the energy function (equivalent to maximizing the posterior proba-
bility defined in Equation 3) with respect to the matching matrix:

E½m� = −
X
i, i′, j, j′

mii′mjj′SðAij,Ai′j′Þ − α
X
i, i′

mii′SðAii,Ai′i′Þ

−
1
β

X
i

X
i′

mii′logmii′,

s:t: ∀i
X
i′

mii′ = 1,∀i′
X
i

mii′ = 1,

(6)

where α controls the relative weights between lexical similarity of
concepts (node attributes) and relational similarity (edge attri-
butes). β is a control parameter used to slowly push the values of
mapping variables toward either 0 or 1 by applying the softmax
function through iterations. An annealing operation with normal-
ization is implemented to gradually increase β over iterations to
approximate the one-to-one constraint. In the implementation
code, we used a fixed number of iterations (500) for all simula-
tions, which was reliably sufficient to ensure stable mapping
solutions for simulation problems in the present paper. Table 1
provides pseudo-code for the probabilistic mapping algorithm.

The soft constraints incorporated in PAM are closely related to
those specified in the multiconstraint theory of analogical mapping,
which was first instantiated in the Analogical Constraint Mapping
Engine (ACME; Holyoak & Thagard, 1989, 1995). Mappings
between similar concepts are favored based on greater semantic
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similarity of node attributes, and mappings of similar relations are
favored based on greater relational similarity of edge attributes.
Nodes and edges can have varying importance weights, reflecting
greater attention to elements important for the analogist’s goals. The
preference to move mapping variables toward 0 or 1 with normali-
zation implements a soft assignment of one-to-one mappings
between concepts across analogs (favoring isomorphic mappings).

Incorporating Relation Constraints Provided by Texts

A longstanding (though unrealized) goal for models of analogy
has been to enable reasoning based on text inputs (e.g., Winston,
1980). When given text inputs (rather than analogies based simply
on sets of words), PAM makes use of constraints provided by
sentence structure. In forming semantic network graphs, PAM can
naturally accommodate relation constraints provided by textual
descriptions of analogs, by controlling the presence and absence
of relation links and their directionality. Because semantic relations
are in the general case nonsymmetric, any pair of nodes can be
linked by two edges with opposite directions (e.g., finger and hand
could be linked by an edge directed from the former to the latter
representing part-whole, and by an edge directed from the latter to
the former representing the converse relation whole-part). Depend-
ing on the reasoner’s knowledge about the analogs (as provided by
textual information about whether and how particular concepts are
related to one another), any concept pair in a graph can be connected
by zero, one (unidirectional), or two (bidirectional) edges. In the
simulations reported here, bidirectional links are constructed by
default when the analogs consist of a simple set of words (as in the
example depicted in Figure 1).
For more complex analogs presented as short texts, we explore

the use of NLP techniques to identify keywords (words used
frequently in the text, which correspond to core concepts) to serve

as nodes in each semantic relation graph. For present purposes, we
assume only very basic parsing of surface syntax to constrain
generation of links. Words that appear close together in a text
are more likely to be related in some significant way. As a simple
heuristic to limit the size of semantic relation networks, we form
links only between those keywords that co-occur within the same
sentence. Unidirectional links are used to capture the directionality
of subject-verb-object (noun-verb-noun) expressions. For example,
the semantic relation network representing the sentence dog chases
cat forms a triangle structure with three unidirectional edges to
capture the head-to-tail pairwise relations (dog → chase, chase →
cat, dog→ cat). This directionality constraint can be applied to any
noun-verb-noun structure in a text. We use this directionality
constraint for all simulations with text input in the present paper.

Though doubtless oversimplified, these heuristics provide a
preliminary procedure for using syntactic information conveyed
by natural language to guide the construction of semantic relation
networks (though some human intervention is still required). The
general approach we favor is to extract as much guidance as possible
from the surface syntax of text (without necessarily requiring the
generation of more abstract propositional representations). We
discuss NLP-assisted generation of semantic relation networks in
connection with Simulation 5.

Analogical Mapping With PAM

Experiment and Simulation 1: Solving Analogies Based
on Multiple Pairwise Relations

PAM is able to resolve mapping ambiguities because the model
maps concepts across analogs based on patterns of similarity among
multiple pairwise relations. Patterns of similarity depend on seman-
tic similarities between individual concepts (node attributes) and on
relation similarities (edge attributes). We first examined mapping
performance in humans and models for analogy problems in which
resolving a mapping ambiguity requires integrating multiple rela-
tions in each analog: finding mappings between triplets of concepts
that form an A:B:C category ordering, for example, weapon : gun:
rifle and mammal : dog: beagle (see the example in Figure 1). We
created 12 Category triplets, and used all possible pairs as analogy
problems to run a human experiment with a large sample size.

Participants

One thousand three hundred twenty-nine participants, Mage =
40.40, SDage = 11.98, age range = (18, 82); 711 female, 608 male,
six gender nonbinary, four gender withheld; minimum education
level of high-school graduation, located in the U.S., U.K., Ireland,
South Africa, or New Zealand, were recruited using Amazon
Mechanical Turk (MTurk; approved, including informed consent
procedures, by the Office of the Human Research Protection Pro-
gram for the University of California, Los Angeles). Of these, 49
participants reported being distracted while completing the task, and
their data were therefore excluded from analyses.

Materials and Procedure

Each participant completed two triplet analogy problems, one of
each of two types. For each problem participants were asked to
create a valid analogy by using their mouse to drag each of a set of
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Table 1
Pseudo-Code for Probabilistic Analogical Mapping (PAM)
Algorithm

Compute semantic similarity of nodes and relation similarity of edges
Apply bistochastic normalization to similarity matrix
β ← β0
m ← equal probability to match to all concepts
for iteration do
compute compatibility matrix based on node/edge similarities and mapping:
∀i ∈ G1, ∀i′∈ G2
Qii′←

P
i

P
j≠i

P
i′

P
j′≠i′mii′mjj′SðAij,Ai′j′Þ + α

P
i

P
i′mii′SðAii,Ai′i′Þ

update soft assignments:
∀i ∈ G1, ∀i′∈ G2

mii′← eβQii′

update mapping matrix m by normalizing across all rows:
∀i ∈ G1, ∀i′∈ G2
mii′←

mii′P
j
mji′

update mapping matrix m by normalizing across all columns:
∀i ∈ G1, ∀i′∈ G2
mii′←

mii′P
j′
mij′

β← β + β0
10

end
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randomly ordered terms (e.g., mammal, beagle, and dog) to one of
the terms in an ordered set (e.g., clothing : sweater : turtleneck)
presented in a fixed position on the screen (see Figure 3A). One
problem was constructed out of two triplets in any order drawn from
a pool of 12 (132 possible triplet pairs), each instantiating an A:B:C
category ordering as in the example above (Category triplets). The
other problem was constructed out of two triplets drawn from a
different pool of 12 (another 132 possible triplet pairs), each
instantiating a part-whole relation conjoined with an object-location
relation (Part-Object-Location triplets). For example, a participant
might be asked to match each of fin, fish, and ocean to each of engine
: car : garage. The order of the two problems was counterbalanced
across participants, and the specific triplets forming each problem
were randomly assigned to each participant. By presenting each
participant with just one problem of each type, we minimized any
opportunity to learn the general structure of the problems (as our focus
was on initial analogical mapping, rather than schema induction). All
triplets are provided in Supplemental Information, Table S1.
Before solving the two experimental problems, the analogy task

was explained using two separate examples (involving different
relations than the experimental problems). The instructions specified
that an analogy is valid if the relations among the terms in each set

match each other. Figure 3A depicts an example trial of the triplet
mapping task as it would be performed by a human participant.

Triplet Simulations

We ran model simulations for all 132 analogy problems based on
Category triplets. We compared the PAM model to several control
models by varying relation representations and mapping algorithms.
The relation vector was defined either as the concatenation of role
and relation vectors created by BART (see Supplemental Informa-
tion for additional variants), or as the difference of the Word2vec
vectors for two words (Word2vec-diff), a standard procedure for
forming a generic representation of the semantic relation instantiated
by a pair of words (Zhila et al., 2013). The mapping algorithm was
either the PAM model based on probabilistic mapping, or an
alternative procedure based on exhaustive search of all possible
mappings to maximize relation similarity. The exhaustive search
algorithm represents the structure of a given triplet A:B:C as a
concatenation of three vectors representing the pairwise relations
between individual terms [A:B, B:C, A:C], and maps an unordered
triplet D, E, F to an ordered triplet A:B:C by finding the
concatenated vector for the unordered triplet that yields the highest
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Figure 3
Model and Human Results for Solving Triplet Analogies

Note. (A) Amapping trial with two triplets of words. Participant must move each of three unordered words in one triplet (column at left) below the
matching word in another triplet (top row) so as to form a valid analogy. (B) Simulation results (predicted proportion of triplet mappings entirely
correct) for Category triplets using four alternative models: coding relations by vectors derived fromWord2vec (difference vectors) or fromBART,
with mapping performed either by an exhaustive comparison of concatenated relation vectors or by the PAM algorithm. Human performance is
indicated by the dashed line. (C) Mapping accuracy for words in the three positions within a triplet for humans and for PAM with BART vectors,
separately for Category and Part-Object-Location triplets. Each datapoint for human performance is based on mean accuracy across individual
participants who completed a given problem. Error bars indicate ±1 standard error of human accuracy for each word position across individual
problems. BART = Bayesian Analogy with Relational Transformations; PAM = Probabilistic Analogical Mapping. See the online article for the
color version of this figure.
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cosine similarity to that of the concatenated vector for A:B:C. Note
that the exhaustive search algorithm is only practical for relatively
small analogy problems such as these triplet analogies, as the
number of possible mappings is of the order O(n!). For example,
if an analogy problem involves 10 concepts in each analog, an
exhaustive search of possible mappings would involve 3.6 million
possible orders. In contrast, PAM based on probabilistic graduated
assignment is much more efficient, with space complexity of O(n2).
For simulations with PAM, a parameter search for α in Equation 4
found that a value of 0.1 yielded the highest mapping accuracy,
indicating that accurate mapping in the triplet task requires down-
weighing the contribution of entity-based lexical similarity.

Comparing Human and Model Performance

For each analogy problem with Category triplets, the mapping
response was counted as correct in an all-or-none manner: a
mapping response was coded as 1 only if all three words were
mapped correctly in a problem. Humans achieved mapping perfor-
mance with average accuracy of 0.74. As shown in Figure 3B, the
PAMmodel (PAMmapping algorithm coupled with BART) yielded
the highest mapping accuracy of the four alternative models (0.83),
exceeding mean performance of our MTurk participants. The two
models using Word2vec-diff relation vectors were clearly inade-
quate. As reported in Supplemental Information, Table S2, standard
PAM shows superior performance to further control models tested in
ablation simulations.
Perhaps surprisingly, the PAM model yielded higher accuracy

than the exhaustive search model with BART relation vectors (0.69).
The exhaustive search algorithm considers all pairwise relations
equally. However, due to the use of the balanced graph matching
algorithm (Cour et al., 2006), PAM selectively emphasizes those
edges that are more distinctive in their similarity pattern. For
example, if the relation between nodes i and j in one analog shows
high similarity to relations between many paired entities in the other
analog, then its relation similarity is not discriminative in signaling
the best mapping. In contrast, if the relation between nodes i and j in
one analog shows high similarity only to the relation between nodes
i′ and j′ in the other analog, and low similarity to relations between
other paired entities, then its relation similarity is more informative in
encouraging PAM to map i to i′ and j to j′. In general, informative
relations have a greater impact on mapping in PAM than do less
informative relations, whereas the exhaustive algorithm weights all
pairwise relations equally. Thus PAM is not simply a computation-
ally tractable approximation to the exhaustive search algorithm;
rather, PAM can lead to superior mapping performance for some
analogy problems. We did not examine the exhaustive algorithm in
the further simulations reported below, as it is computationally
expensive for larger problems and lacks any simple means of varying
the relative impact of different contributors to overall similarity.
For both problem types, PAM’s proportion correct was modestly

higher than that observed for the human data (0.83 vs. 0.74 for
Category triplets; 0.89 vs. 0.79 for Part-Object-Location triplets),
perhaps due to variable effort on the part of the MTurk participants.
In order to quantitatively compare predictions of PAM and the
model variants to human performance, we conducted item-level
analyses. We calculated the root-mean-square deviation (RMSD) of
model predictions from the corresponding human responses (all
responses scored as 1 for a fully correct mapping, .5 for a partially

correct mapping, and 0 for an incorrect mapping) on each individual
problem spanning both Category and Part-Object-Location triplets.
Lower RMSD values indicate a closer match to human performance.
The value of RMSD was lower for standard PAM (.22) than for
either a control model without relation representations (Nodes-only,
.38) or a control model with weak relation representations (Word2-
vec-diff with either mapping algorithm, .39). (For additional model
comparisons see Supplemental Information.)

PAM also makes novel predictions regarding the accuracy of
mappings at the level of individual word positions, which are
predicted to vary across the two triplet types that were tested. As
shown in Figure 3C, for Category triplets PAM predicts lowest
accuracy for the middle word position (the intermediate category),
whereas for Part-Object-Location triplets PAM predicts lowest
accuracy for the first word position (the part). (See Supplemental
Information for additional model comparisons.) Humans show a
similar pattern of mapping accuracy at the level of word position in
the different analogy problems. A two-way mixed analysis of
variance (ANOVA) for mean human accuracy across problems,
using triplet type (Category vs. Part-Object-Location) as a between-
problem factor, and word position (first vs. middle vs. last) as a
within-problem factor, revealed reliable main effects for triplet type,
F(1, 262)= 6.24, p = .013, and word position, F(2, 524) = 3.53, p =
.030, as well as a reliable interaction, F(2, 524) = 17.78, p < .001.
We followed up with six planned pairwise comparisons between
word positions within each triplet type. Using a Bonferroni correc-
tion for multiple comparisons, we found that for Category triplets,
participants were reliably less accurate in correctly mapping the
middle word position (the intermediate category) than the first word
position (the superordinate category), t(131) = 4.48, p < .001. The
accuracy difference between the middle and last word positions (the
subordinate category) fell short of significance after Bonferroni
correction, t(131) = 2.10, p = .207, as did that between the first
and last word positions, t(131) = 2.21, p = .162. For Part-Object-
Location triplets, participants were least accurate for the first word
position (the part): comparing first to middle word position (the
object), t(131) = 3.93; comparing first to last word position (the
location), t(131) = 5.01, both p’s < .001. Accuracy did not differ
between the middle and last word positions, t(131) = 1.57, p = .529.

Overall, this set of findings confirms that PAM coupled with
BART relation vectors is able to find systematic mappings by
inferring and then integrating multiple pairwise relations, yielding
mapping performance comparable to that of humans.

Simulation 2:Mapping Science Analogies andMetaphors

Analogies play an important role in both the development of
scientific theories (Holyoak & Thagard, 1995) and in interpreting
everyday metaphors (Lakoff & Johnson, 1980). It has generally
been assumed that mapping such complex systems of knowledge
depends directly on propositional representations, often using
higher-order relations that take entire propositions as arguments.
However, a study by Turney (2008) showed that people are able to
find reasonable mappings for a set of 20 science analogies and
analogical metaphors (Table 2) in which each analog has been
reduced to 5–9 concepts corresponding to keywords, without
accompanying texts (see Supplemental Information). These pro-
blems are all cross-domain, semantically-distant analogies, such as
the Rutherford–Bohr analogy for the atom, or that between a
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computer and a mind. The keywords are a mix of nouns and verbs.
For example, the source solar system is paired with the target atom,
each represented by seven keywords (solar system set: solar system,
sun, planet, mass, attracts, revolves, and gravity; atom set: atom,
nucleus, electron, charge, attracts, revolves, and electromagne-
tism). To take a second example, the source analog computer
includes nine keywords (computer, outputs, inputs, bug, processing,
erasing, write, read,memory), as does the target analogmind (mind,
muscles, senses,mistake, thinking, forgetting,memorize, remember,
memory). Turney showed that this set of analogies can be solved
reliably by a computational model, Latent Relation Mapping
Engine (LRME), that searches large text corpora for relation words
associated with each keyword, and then uses frequencies of co-
occurrence as an index of relational similarity. Turney also asked 22
human participants to mapwords between source and target analogs,
and assessed human performance in this mapping task for each
problem.
We applied PAM to this dataset of 10 science analogy problems

and 10 analogical metaphors. In Simulation 2, PAM formed seman-
tic relation networks for each analog, with node attributes coded as
Word2vec vectors for each word, and edge attributes coded as
BART vectors for all pairwise relations. It is important to note that
none of the word pairs in these materials had been used to train the
BART model. This simulation thus provides a strong test of
generalization for relation identification, based on the distributed
representations of relations created by BART, and relies heavily on
the model’s ability to educe relations between concepts.
Figure 4 depicts human and PAM mapping accuracy for each

problem. Across the 20 analogies, the PAMmodel achieved a mean
accuracy of 85% in identifying correct correspondences of key-
words between two analogs, approaching the 88% accuracy
observed in Turney (2008) experiment with adult human partici-
pants (though less than the 92% accuracy achieved by Turney’s
LRME model). Trends for individual problems showed higher
mapping accuracy for PAM over humans for 10 problems, humans
over PAM for nine, with one tie. For the computer/mind analogy,
PAM yielded correct mappings between all corresponding words
across the two analogs (computer tomind, outputs tomuscles, inputs
to senses, bug to mistake, etc.).
Several model variants were also tested (see Supplemental

Information). Given that the analogs used in Simulation 2 are based
solely on keywords, without any support from structured text, it is
reasonable to consider whether performance of the full PAM model

was driven solely by the semantics of the keywords themselves. In
general, PAM’s performance was fairly similar across model var-
iants. However, overall accuracy was reduced if edge similarity was
excluded (Nodes-only, 77%), or if Word2vec-diff was used instead
of BART to create relation vectors (Word2vec-diff, 77%). Hence
PAM’s performance depended in part on BART’s relation vectors.
The standard PAM model correctly predicts lower mapping accu-
racy for the 10 science analogy problems (0.79) than for the 10
analogical metaphor problems (0.90), consistent with the difference
observed for humans (0.85 for science analogy problems and 0.91
for analogical metaphor problems). The model variant without
relations (Nodes-only) did not show this difference (.78 accuracy
for science analogy problems and .77 for analogical metaphor
problems). Accuracy remained high (0.85) for the BART-role
variant, in which the edge vectors included only the role component.
Recall that for each relation in BART’s vector, the role component is
jointly determined by the relation and by semantic features of the
keyword playing the first role of the relation. Thus although relation
information played a significant role in PAM’s performance, seman-
tic features of keywords were certainly influential.

Simulation 3: Pragmatic Influences on Mapping

Some analogies pose mapping ambiguities that cannot be
resolved simply by integrating the available relations, because
the relations themselves support multiple potential mappings about
equally. For example, when people were asked to draw analogies
between the actors in the first Gulf War (in 1991) and those inWorld
War II, the American President George H.W. Bush paired with U.S.
was sometimes mapped to Franklin Roosevelt and the U.S., and
sometimes to Winston Churchill and Great Britain (as all three pairs
instantiate the relation “wartime leader of nation”; Spellman &
Holyoak, 1992). Individual participants tended to choose one or the
other of the two mappings that were pairwise consistent, with a
significant number choosing each. Pairs were almost always mapped
consistently (i.e., people seldom mapped Bush to Roosevelt but the
U.S. to Great Britain).

Although people clearly prefer isomorphic (one-to-one) map-
pings, they must cope with naturalistic situations of this sort that
have considerable relational overlap (as well as similarities between
individual objects), but that are not in fact isomorphic. In such cases
people sometimes give responses that violate a strict one-to-one
constraint (e.g., about 7% of participants mapped the U.S. of the

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Table 2
Science Analogies and Analogical Metaphors Dataset (20 Source/Target Pairs) Developed by
Turney (2008)

Science analogies Analogical metaphors

A1. solar system/atom (7) M1. war/argument (7)
A2. water flow/heat transfer (8) M2. buying an item/accepting a belief (7)
A3. water waves/sound waves (8) M3. grounds for a building/reasons for a theory (6)
A4. combustion/respiration (8) M4. physical travel/problem solving (7)
A5. sound waves/light waves (7) M5. money/time (6)
A6. terrestrial motion/planetary motion (7) M6. seeds/ideas (7)
A7. agricultural breeding/natural selection (7) M7. machine/mind (7)
A8. billiard balls/heat due to molecular motion (8) M8. holding object/understanding idea (5)
A9. computer/mind (9) M9. path following/argument understanding (8)
A10. slot machine/bacterial mutation (5) M10. seeing/understanding (6)

Note. Number of keywords for each problem appears in parentheses.
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Gulf War era onto both the U.S. of World War II and also Great
Britain). In several experiments using nonisomorphic analogies, a
minority of participants produced one-to-many or (more often)
many-to-one mappings (Krawczyk et al., 2004; Spellman &
Holyoak, 1992, 1996). Such findings are consistent with mapping
models such as PAM (also ACME, Holyoak & Thagard, 1989, and
LISA, Hummel & Holyoak, 1997) that treat isomorphism as a soft
constraint, rather than a strict filter on possible mappings.
Particularly when analogs are in fact nonisomorphic, a preferred

mapping may be determined by pragmatic factors, notably the
reasoner’s goal in using the analogy (Holyoak, 1985). In PAM,
prior beliefs about probable analogical correspondences, and pre-
ferences for correspondences based on goal-related elements, can be
represented by varying attention weights (Nosofsky, 1986) on
relevant nodes and edges (reflecting relative attention to different
components of analogs). In Simulation 3, PAM was applied to a set
of nonisomorphic story analogies used in a study by Spellman and
Holyoak (1996, Experiment 2). Each analog was a science-fiction-
style description of multiple countries. The countries on each of two
planets (forming the source and target analogs) were linked by
various economic and/or military alliances, such that the country
Barebrute on one planet could be mapped to either the country
Hungerall on the second planet based on a shared economic relation
(summarized by the predicate aid-economic), or to Millpower based
on a shared military relation (aid-military; see schematic description
in Figure 5). In these stories, similarities were balanced so that the
mapping for Barebrute was ambiguous, as country Barebrute on
Planet 1 had equal similarity to the countries Hungerall and Mill-
power on Planet 2. In the human experiment, manipulations of
participants’ processing goals guided their preferred mappings:
stressing the importance of either economic factors or Hungerall

encouraged the Barebrute—>Hungerall mapping relative to the
Barebrute—>Millpower mapping, whereas stressing either military
factors or Millpower encouraged the Barebrute—>Millpower map-
ping relative to the Barebrute—>Hungerall mapping.

PAM was provided with a set of concepts for each analog. As
shown in Figure 5, the source analog included nine concepts
(Afflu, Barebrute, Compak, rich, poor, strong, weak, aid-
economic, aid-military), and the target analog included 10 con-
cepts (Grainwell, Hungerall, Millpower, Mightless, rich, poor,
strong, weak, aid-economic, aid-military). Note that the predi-
cates aid-economic and aid-military were included as nodes. The
Word2vec vector for country was assigned to all the imaginary
countries used in both analogs (hence node similarity could not
discriminate among the possible mappings for any country). To
simulate the pragmatic impact of goals on mapping the ambigu-
ous country (Barebrute), attention weights were increased on the
relations relevant to a particular goal. In the condition stressing
the importance of Hungerall, all pairwise relations involving
Hungerall, including its relation to Grainwell via aid-economic,
were assigned attention weights. In the condition stressing eco-
nomic factors, the relation between Grainwell and rich was also
emphasized. Complementary sets of relations were assigned
attention weights to model the conditions emphasizing the coun-
try Millpower or military factors.

During each simulation run, PAM sampled the value of its
attention weight from a uniform distribution within the range of
[1, 1.1]. The left panel in Figure 6 shows the proportion of trials on
which humans selected Hungerall or else Millpower as the preferred
mapping for the ambiguous country Barebrute across different
conditions. The right panel in Figure 6 shows the probability that
PAM selected each preferred mapping (obtained by averaging 1,000
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Figure 4
Model and Human Performance for Solving 10 Science Analogies and 10 Analogical Metaphors in a Dataset
Developed by Turney (2008)

Note. Numbers correspond to analogies listed in Table 2 (ordered from highest to lowest human accuracy within each type).
Each problem includes 5–9 keywords in source and target analogs (numbers are provided in Table 2). Mapping accuracy is
defined as the proportion of keywords correctly mapped. See the online article for the color version of this figure.
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samples of attention weights for each experimental condition). In the
simulation of the control condition (equal emphasis), PAM predicts
that the ambiguous country Barebrute will be mapped to Hungerall
and Millpower with equal probability. Although PAM does not
include an explicit decision mechanism for dealing with such
ambiguous mappings, it would be reasonable to expect that a
reasoner would either provide both correspondences or report
just one of the two (chosen randomly). In Spellman and
Holyoak’s (1996) experiment, about half of human participants
in the control condition mapped both Hungerall and Millpower to
Barebrute, so many-to-one mappings are certainly observed.
When attention weights are used to emphasize particular goals,

PAM predicts the qualitative shift in the preferred mapping for
Barebrute. Given emphasis on Hungerall or economic factors,
Barebrute is more likely mapped to Hungerall; given emphasis
onMillpower or military factors, Barebrute is more likely mapped to
Millpower. It is also noteworthy that PAM captures an asymmetry in
the impact of goals on mapping. Both in the human data and in
PAM’s predictions, the impact of emphasis on Hungerall or eco-
nomic factors yields a smaller shift in mappings relative to an
emphasis onMillpower or military factors. This asymmetry emerges
even though PAM models the economic and military goals using
exactly symmetrical shifts in attention weights.
This asymmetry arises from subtle differences in the semantic

similarities among keywords (nodes), which are inherited from the

Word2vec embeddings that encode semantic meanings of individual
concepts: economic shows more similar semantic associations to
several alternative keywords (poor, rich, weak, strong) than does
military. These semantic differences render the military-related
keywords more distinctive (resulting in less ambiguous mappings),
and hence more resistant to displacement when competing with
economic-based mappings than vice versa. When model variants
were examined, this asymmetry disappeared in the variant that
excluded node similarities (BART edges-only), confirming that
keyword similarities drove the effect (see Supplemental Informa-
tion). Edge similarities were certainly critical to the overall perfor-
mance of the model, as the variant that omitted edge similarities
(Nodes-only) was completely unable to capture the pattern of human
mapping judgments. The Word2vec-diff model was unable to run at
all because of issues arising from the identical node vectors (for the
word country) assigned to all the imaginary countries. Only the full
PAM model, which fully integrates rich semantics of concepts and
relations into the mapping process, can account for the fine-grained
aspects of human judgments.

Simulation 4: Modeling the Relational
Shift in Cognitive Development

Developmental research has shown that children’s ability to reason
and solve problems by analogy generally improves with age
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Figure 5
Semantic Relation Networks for Story Analogs From Spellman and Holyoak (1996, Experiment 2)

Figure 6
Human Responses (Spellman & Holyoak, 1996, Experiment 2) and PAM Predictions in Simulation 3

Note. Data indicate the probability of mapping the ambiguous country Barebrute to either Hungerall (based on similar economic relations) or Millpower
(based on similar military relations) for different experimental conditions. PAM= Probabilistic AnalogicalMapping. See the online article for the color version
of this figure.
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(Holyoak et al., 1984). Over the course of cognitive development,
children undergo a relational shift (Gentner & Rattermann,
1991) from a primary focus on direct similarity of objects toward
greater reliance on relational information. As noted previously,
a variety of factors are known to globally shift the balance
between the impact of semantic similarity of individual concepts
versus relational similarity on comparison judgments. Relational
similarity tends to be more potent when overall relational similarity
across analogs is relatively high (Goldstone et al., 1991), when the
objects in visual analogs are sparse rather than rich (Gentner &
Rattermann, 1991; Markman & Gentner, 1993), and when partici-
pants are given more time to make their judgments (Goldstone &
Medin, 1994). From the perspective of PAM such global factors,
including the relational shift, can potentially be captured by variations
in the parameter α in Equation 6.
As a test of whether PAMcan account for developmental changes in

analogy performance, we simulated findings from a classic develop-
mental study by Gentner and Toupin (1986). In this study children
used toys to enact interactions among three animal characters, using
actions familiar to young children (e.g., playing). The experimenter
guided the children to act out the events in the source story, and then
asked them to repeat the same events using different characters in a
target analog. Using variants of the same basic stories, a 2 × 2 design
was created to manipulate systematicity of the source analog and
compatibility1 of the mappings between source and target characters.
In one example, the source text was a short passage describing
interactions among a seal, penguin, and dog. The introduction to
the systematic version stated that the seal was jealous and did not want
his friend the penguin to play with anyone else. The story ended by
stating the moral that it is wrong to be jealous and better to have more
friends. In the nonsystematic version the introduction described the
seal as “strong” rather than “jealous,” and the moral was omitted. The
body of the story was identical in the two versions, describing how the
penguin played with the dog, angering the seal, but how the dog
eventually saved the seal from danger. Thus in the systematic version
the seal’s jealousy had an intuitive connection to his anger and
behavior, which the nonsystematic version lacked. Gentner and
Toupin (1986) hypothesized that the systematic version was richer
in higher-order relations (in particular, the relation cause, presumed to
hold between propositions).
The target analog also involved three animal characters. In the

high compatibility condition three animals, each similar to one of the
source characters, played corresponding roles: <seal, penguin,
dog> maps to <walrus, seagull, cat>. High compatibility between
relational roles and object similarity makes mapping straightfor-
ward. In the low compatibility condition the same animals were
assigned to different roles, creating cross mappings between roles
and object similarity: <seal, penguin, dog> maps to <seagull, cat,
walrus>. Such cross mappings, in which the tendency to match
relational roles competes with a preference to match similar objects,
create difficulty for children and even for adults (Markman &
Gentner, 1993). Finally, in the medium compatibility condition
the three animals to be mapped were <lion, giraffe, camel>, which
have no particular similarity to animals in the other analog. The
medium compatibility condition was thus neutral with respect to
mappings between relational roles and animals.
Gentner and Toupin (1986) tested groups of younger (4–6 years)

and older (8–10 years) children, scoring each child on accuracy in
reenacting the story using the target characters. Children in both

groups performed best when the source was systematic and the
character mapping was highly compatible. Accuracy was impaired
when the source was nonsystematic and when compatibility was
low. The overall advantage of the systematic analogs was attributed
to the presence of higher-order (causal) relations that participate in
the mapping. For the younger children, systematicity was less
beneficial overall than it was for the older children, and the
detrimental impact of cross mappings (low compatibility) was
greater. These findings were interpreted in terms of a relational
shift, such that the older children were less influenced by object
similarity and guided more by relational information (especially
higher-order relations).

The PAM simulation provides a qualitative approximation to the
experiment with children (using mapping accuracy as an estimate of
accuracy in story reenactment). Simulations were based on eight
different sets of animal triplets used in the experiment (see Supple-
mental Information for materials and also additional model compar-
isons). The keyword concepts used as input to PAMwere drawn from
the introduction to the stories: three animals and the verb play. These
keywords were shared across the systematic and unsystematic con-
ditions. The only difference between the inputs for the two versions
was that the systematic version included the adjective jealous as a
keyword, whereas the substituted adjective strongwas not included as
a keyword for the unsystematic version. Jealous was selected as a
keyword because it occurs twice in the systematic version (both in the
introduction and the concluding moral), whereas strong occurs only
once in the unsystematic version. This selection was confirmed by
running two different NLP algorithms on the stories (a program
developed by Tixier et al., 2016, and the MATLAB TextRank
keyword extraction function). Both algorithms identified jealous
but not strong as a keyword. More generally, we hypothesize that
high systematicity reflects greater text coherence (Kintsch, 1988), for
which keyword extraction provides a simple proxy. Notably, PAM
was not providedwith any information about higher-order relations for
either the systematic or unsystematic versions.

To distinguish the syntactic subject and object roles in noun-verb-
noun sentences, PAM uses unidirectional edges. In this simulation,
given a sentence stating that one animal plays with another (e.g.,
seal plays penguin), the forward edge only was created for the three
constituent pairwise relations (seal : play, play : penguin, seal :
penguin). These single forward edges capture the directionality of
the syntactic subject and object roles associated with the verb. For
example, given the source analog seal plays penguin, PAMwill give
a higher mapping score for the potential target analog walrus plays
seagull than for the cross-mapped source analog seagull plays
walrus, yielding a positive effect of compatibility.

Wemanipulated the parameter α in Equation 6, which controls the
impact of lexical similarity (nodes) in mapping. PAM compared
mapping performance when lexical similarity was given a high
weight (Figure 7A, top, α = 2) to performance when this weight was
lower (Figure 7B, top, α = 1). Greater weight on node attributes
increases the impact on analogical mapping of similarity between
animals in the source and target relative to the impact of semantic
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1 The variable we refer to as “compatibility” (of object and relational
similarity) was termed “transparency” by Gentner and Toupin (1986). For
methodological reasons, in their experiment the characters were varied in the
source rather than target, which creates the same 2 × 2 design used in our
simulation.
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relations (edge attributes), simulating the lesser sensitivity to rela-
tion similarity for preschool children. As shown in Figure 7, the
PAM simulation captures important trends in development of ability
in analogical reasoning: the overall benefit of both source systema-
ticity and mapping compatibility, the interaction between these two
factors, as well as greater sensitivity to systematicity for older
children. PAM’s simulation demonstrates that the impact of sys-
tematicity on analogical mapping, at least in the study by Gentner
and Toupin (1986), can be explained without requiring any assump-
tions about the use of higher-order relations.
With respect to the relational shift, theorists have suggested that

the developmental increase in focus on relations may reflect some
mix of increased relational knowledge and maturation of important
executive processes, notably working memory and inhibitory control
(Morrison et al., 2011; Richland et al., 2006). To model changes in
reasoning abilities of the 4–6-year-old versus 8–10-year-old chil-
dren, PAM holds constant both knowledge of relations (with no
higher-order relations being used at either age) and the basic mapping
algorithm. Instead, PAM simply manipulates its parameter α, con-
trolling the relative influence of relation versus object similarity on
mapping. PAM thus instantiates the hypothesis that with increasing
age, children come to preferentially place greater weight on relations
when reasoning by analogy. This account is consistent with more

recent proposals about the development of analogical reasoning,
which attribute some performance differences among children to
learned (possibly culturally-dependent) preferences for relations
versus objects, rather than differences in either prior knowledge
or processing ability (Carstensen et al., 2019; Kuwabara & Smith,
2012; Richland et al., 2010; also see Kroupin & Carey, 2022). More
generally, the relational shift is very likely the product of multiple
types of developmental changes.

Simulation 5: Mapping Richer Text Representations

PAM can potentially map more complex analogies presented as
texts. As an initial effort, we applied the model to find mappings
between a source story and target problem introduced by Gick and
Holyoak (1980) and widely used in psychological research on ana-
logical problem solving. The source story (The General) describes
how a general sends small groups of soldiers down multiple roads to
capture a fortress located in the center of a country; the target (radiation
problem) describes a doctor attempting to use a kind of ray to destroy
an inoperable stomach tumor without damaging healthy tissue. The
analogous convergence solution to the radiation problem is to use
multiple weak rays directed at the tumor (Duncker, 1945). The two
analogs are not isomorphic, and not all concepts have clear mappings.
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Figure 7
PAM Simulation of Character Mapping by Children of Different Ages (Top) and Children’s
Accuracy in Reenacting Stories (Bottom; Reprinted by Permission From Gentner & Toupin,
1986)

Note. A, top: Mapping accuracy with node attributes weighted with α = 2; bottom, data for 4–6-year-
old children. B, top: Mapping accuracy with node attributes weighted with α = 1; bottom, data for
8–10-year-old children. PAM = Probabilistic Analogical Mapping. See the online article for the color
version of this figure.
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The texts for the two analogs (Supplemental Information,
Table S7) consisted of 13 sentences constituting the problem
statement for The General and seven sentences constituting the
radiation problem. Keywords and semantic relations were identified
using an NLP-assisted procedure. After replacing pronouns with
their antecedents, each text was passed through a customized text
preprocessing code with the following four steps: (a) the top 20 most
frequent words were selected; (b) the MATLAB TextRank keyword
extraction function was run to select nouns, adjectives, and verbs
included in the top 20 high-frequency word set; (c) theMATLAB bag-
of-n-gramsmodel with the window size of 2-gramwas used to identify
pairwise relations between the keywords; (d) noun–noun relations
were selected only when both nouns appeared in the same sentence.
The procedure for keyword extraction and pairwise relation prepro-
cessing yielded 14 keywords for The General story (country, dictator,
fortress, villages, commander, large, army, capture, roads, landmines,
attack, small, many, troops) and 10 keywords for the radiation
problem (doctor, tumor, patient, destroyed, ray, high, intensity,
destroy, healthy, tissue). To avoid extreme heteronyms, the word
general was replaced by commander and mines were replaced by
landmines. Given their near synonymy, troops was replaced by army
in forming pairwise relations. We then manually added an important
noun–verb–noun relation to each representation, “commander controls
army” and “doctor uses rays.”Although not directly stated in the texts,
both are obvious inferences. As in previous simulations, unidirectional
edges were used to code noun–verb–noun relations. The NLP-assisted
text preprocessing thus yielded the basic elements for representing the
analogs. Semantic relation networks were created for each analog,
with Word2vec embeddings providing node attributes for individual
keywords, and BART vectors providing edge attributes for semantic
relations between keywords.
Figure 8 shows the major correspondences between concepts that

PAM identified for the two analogs. Seven concepts have mappings
for which humans generally agree: army → ray, fortress → tumor,
commander→ doctor, country→ patient, large→ high, capture→
destroy, controls → uses). PAM identifies all seven of these major
mappings, and also maps attack to destroy. According to human

intuition, a few concepts in The General have no clear match in the
radiation problem (e.g., dictator, landmines, roads). Because PAM
aims to find mappings for all concepts, these poorly-matched
concepts end up in arbitrary pairings.

We performed additional simulations using variant models (see
Supplemental Information). In particular, we sought to confirm that
PAM’s mapping performance is not solely due to the structure of its
semantic relation networks, but also depends on the content of the
relation vectors. When relation vectors produced by BART were
replaced with Word2vec-diff vectors (while holding constant all
other operations in the mapping algorithm), only two of the seven
major correspondences between concepts were recovered. Accuracy
was also reduced when the full PAM model was ablated to include
only node similarities (Nodes-only, four correct correspondences) or
only edge attributes (BART edges-only, three correct). Thus PAM’s
performance critically depends on having effective representations
of semantic relations as edge attributes, and not solely on the form of
its semantic relation networks.

Simulations 6 and 7: Selection of Plausible
Source Analogs

As noted earlier, mapping is considered central to analogical
reasoning because it impacts other key processes, including the
initial retrieval of a potentially useful source analog. Memory
retrieval involves a process of comparing a cue to cases stored in
long-term memory; although it seems unlikely that a cue could be
mapped to every stored case, several models of analog retrieval have
proposed that some form of mapping can be performed on a smaller
set of “finalists” that pass some basic threshold of similarity (Forbus
et al., 1995; Hummel & Holyoak, 1997; Thagard et al., 1990).

Indeed, analog retrieval appears to be sensitive to the same basic
constraints as analogical mapping: similarity of individual concepts
and of relations, modulated by differential attention to goal-relevant
elements. However, retrieval and mapping are at least partially
dissociable. Gick and Holyoak (1980, 1983) showed that people
often fail to retrieve a potentially useful far analog, suggesting
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Figure 8
Semantic Relation Networks for The General Story and the Radiation Problem, With Mappings Created
by PAM That Link Major Concepts

Note. To avoid clutter some keywords are omitted. PAM = Probabilistic Analogical Mapping. See the online article
for the color version of this figure.
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retrieval is more difficult than mapping when the analogs are
semantically distant. Later studies confirmed this pattern
(Gentner et al., 1993; Holyoak & Koh, 1987; Keane, 1987; Ross,
1987, 1989; Seifert et al., 1986). Other studies found that people
produce far source analogs in response to a target more often when
the pragmatic context involves a goal of communicating ideas to
others (e.g., political argumentation; Blanchette & Dunbar, 2000,
2001). However, in the latter studies the relative number of near and
far potential analogs actually available in memory was unknown.
When relative availability is taken into account, studies using
naturalistic paradigms also find that analog retrieval is heavily
influenced by similarity of individual concepts (Trench &
Minervino, 2015). At the same time, experimental evidence indi-
cates that relational similarity also impacts retrieval (Wharton et al.,
1994, 1996).
Analog retrieval, of course, is simply one manifestation of the

normal operation of memory processes. The problem of finding a
“useful” source analog in response to a target analog can be
considered as a special case of a rational analysis of memory
(Anderson & Milson, 1989). Given a set of potential sources S
stored in memory, the probability that Si is the optimal candidate for
retrieval given some target2 analog Twill be proportional to the prior
probability that Si is optimal multiplied by the likelihood that Si is
optimal given T. The prior will favor source analogs that have been
useful in the past; hence highly familiar sources will tend to be
preferentially retrieved. A particularly well-established example is
the prevalent use by children of the “person” concept as a source in
making inferences about other animals and plants (Inagaki &
Hatano, 1987). Similarly, people understand new individuals by
spontaneously relating them to significant others, such as a parent or
close friend (Andersen et al., 1995).
Analogical access, like memory retrieval in general, is inherently

competitive. Studies have shown that for any cue, people are more
likely to retrieve a case from long-termmemory if it is the best match
available (based on similarity of both concepts and relations) than if
some other stored case provides a better match (Wharton et al., 1994,
1996). Retrieval involves competition between multiple potential
source analogs, whereas mapping focuses on a single source. Also,
during mapping information about both analogs can be actively
processed in working memory, enabling eduction of relations to
create or elaborate semantic relation networks. In contrast, source
analogs are necessarily dormant in long-term memory prior to being
retrieved.
In terms of PAM, encoding a source analog would involve storage

of all or part of a semantic relation graph. Storage of concepts and
relations will be inherently asymmetrical: concepts A andB (nodes in a
graph) may be stored without necessarily storing the relation A:B,
whereas A:B (the edge between A and B) can only be stored if A and B
are also stored. Since retrieval of far analogs will be relatively
dependent on shared relations, retrieval of far versus near analogs
will be disadvantaged to the extent important semantic relations in the
source were not fully encoded into memory. As this analysis predicts,
domain experts (who are more likely to focus on relevant relations
during both encoding and retrieval) are more successful than novices
in accessing remote source analogs based on relational similarity
(Goldwater et al., 2021; Novick, 1988; Novick & Holyoak, 1991).
Given that semantic relation networks have been stored in

long-term memory, PAM can be used to calculate a measure of
overall similarity—a “mapping score,” which is the log-likelihood

defined in Equation 4 using the maximum a posteriori estimate
of mapping m̂ inferred by the model. We term this measure the
G score:

G =
X
i

X
j≠i

X
i′

X
j′≠i′

m̂ii′m̂jj′SðAij,Ai′j′Þ

+ α
X
i

X
i′

m̂ii′SðAii,Ai′i′Þ: (7)

G provides an overall assessment of similarity based on both
concept similarity (node attributes) and relational similarity (edge
attributes). This mapping score can be used to rank alternative
source analogs in degree of fit to a target.3 Of course, it would be
computationally unrealistic to assume that analog retrieval is based
on a full-blown mapping process applied to all possible source
analogs stored in long-term memory. However, some heuristic
process based on concept similarity or on important relations
involved in analogs could be used to select a tractable number of
source analogs that exceed some initial threshold, after which the
mapping process could be used to select the source(s) that best fit the
target (cf. Forbus et al., 1995). Here we report two simulations that
assess PAM’s mapping score as a potential mechanism to guide
analog retrieval given a circumscribed set of alternatives.

Simulation 6 aimed to demonstrate that PAM can account for the
often-observed dissociation between the impact of concept similar-
ity on retrieval versus mapping. Keane (1987, Experiment 1)
examined retrieval of several variations of source analogs to the
radiation problem (see Simulation 5). The source analog was always
presented as a story, which was studied 1–3 days before presentation
of the target radiation problem. Keane found that 88% of partici-
pants retrieved a source analog from the same domain as the target (a
story about a surgeon treating a brain tumor), whereas only 12%
retrieved a source from a remote domain (a story about a general
capturing a fortress, very similar to that used by Gick & Holyoak,
1980). This difference in ease of access was dissociable from the
ease of post-access mapping and inference: the frequency of gener-
ating the convergence solution to the radiation problem once the
source analog was cued was high and equal (about 86%) regardless
of whether the source analog was from the same or a different
domain.

The source texts used by Keane (1987) were very similar to those
examined in Simulation 5, but shorter and simpler. For the military
story (far source analog) our text preprocessing program yielded six
keywords (commander, fortress, army, country, destroy, large); for
the medical story (near analog) the program yielded seven keywords
(surgeon, cancer, rays, brain, destroy, high, intensity). The
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2 Here we encounter an unfortunate conflict between the target/source
terminology of the analogy literature and the cue/target terminology of the
memory literature. In typical analog retrieval, a target analog serves as a
retrieval cue, and potential source analogs are available as “targets” stored in
long-termmemory.We will continue to use the term “target” in the sense of a
target analog.

3 Equation 7 can potentially be refined to deal with situations in which
semantic relation graphs for different analogs vary substantially in size (cf.
Marshall, 1995). In addition, a quantitative model would relativize retrieval
probability to reflect competition among alternative source analogs stored in
memory (Hummel & Holyoak, 1997). In the present simulations the analogs
are of similar size, and we only make qualitative predictions (aiming to
predict the rank order of retrieval probabilities for different possible source
analogs).
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radiation problem (target) yielded 10 keywords. We ran PAM the
same way as reported in Simulation 5. PAM found the correct
mapping of core concepts for both source stories: commander →
doctor, fortress → tumor and army → rays for the far source; and
surgeon → doctor, cancer → tumor and rays → rays for the near
source. However, the value of the G score was substantially higher
for the near source (2.216) than for the far source (1.665). Simula-
tion 6 thus captures the qualitative pattern of human performance:
higher probability of retrieving a near than far source, coupled with
equal (and high) success in mapping either to the target.
In Simulation 7 we examined PAM’s predictions for analog

retrieval using a larger dataset. Turney’s (2008) dataset of 20 science
analogies and analogical metaphors (used in Simulation 2) provides
a test of PAM’s ability to identify “good” source analogs for a given
target analog. The mapping score G can be used to rank order any
number of potential source analogs in degree of fit to a given target.
To assess the ability of PAM to rank potential source analogs, in
Simulation 7 the 20 examples of analogies in Table 2 were used to
create a source selection task. For this simulation, we assume that the
semantic relation networks for all 20 source analogs have been
successfully stored in long-term memory, and that the semantic
relation for a given target analog serves as a retrieval cue. For
example, given atom (#1) as the target analog, we would expect
solar system to be selected as the best source analog among the 20
alternatives.
For this computational experiment, each target analog in turn was

mapped to all 20 source analogs, and PAM’s mapping score was
obtained for each potential source. For 17 out of the 20 targets, the
best match as computed by PAM was the intended source shown in
Table 2. For the three target analogs in which PAM’s mapping score
did not identify the expected source analog, the “errors” proved to be
very reasonable. The science analogy dataset includes target analogs
that are closely linked to multiple relevant sources. Specifically, two
of the science analogies involved gravity (#1 and #6 in Table 2), two
involved wave motion (#3 and #5), and two involved heat (#4 and
#8). PAM assessed the best match for planetary motion (#6) to be
solar system (#1), a source analog based on essentially the same
knowledge (with overlapping keywords). The best match for the
target sound waves (#3) was the source sound waves (#5, with
somewhat different keywords), and the best match for heat due to
molecular motion (#8) was the source combustion (#4). These
choices indicate that PAM favors retrieval of near over far analogs,
as do humans. In each of these cases PAM selected the intended
source shown in Table 2 (a far analog) as the next-best match. For
the target light waves (#5) the expected source (sound waves) was
selected as the best match, with the other available wave analog
(water waves, #3) ranked second. Figure 9 shows the entire distri-
bution of G scores across the 20 alternative source analogs for each
of four representative target analogs.
For each target analog, PAM’s measure of mapping quality thus

identified relationally-similar source analogs from semantically-
distant domains. The results of Simulation 7 indicate that when a
semantic relation network has been stored in long-term memory for
each analog in a set of potential source analogs, PAM can select a
useful source for a given target from among a larger pool of
candidates. Of course, if the semantic relation networks for source
analogs were poorly encoded or have been degraded by forgetting,
retrieval will be less sensitive to shared relations.

General Discussion

Summary and Implications

We have presented a novel Bayesian model of analogical map-
ping, PAM, which builds on advances in machine learning that
automate the generation of rich semantics for both concepts (by
Word2vec) and relations (by BART trained using Word2vec).
From these inputs, the model creates semantic relation networks
that capture the skeletal structure of complex analogs. PAM operates
on semantic relation networks to find mappings between key
concepts. The model automatically creates relation networks by
integrating fragmentary semantic knowledge about individual con-
cepts and the relations that link them, guided by textual constraints
when available.

PAM is able to solve analogies that require integration of multiple
relations in each analog (Simulation 1, based on data from a novel
mapping task), matching the pattern of human performance in
considerable detail. The model is also able to solve complex
analogical mappings based on sets of predefined keywords (Simu-
lation 2, based on Turney, 2008), and can account for the impact of
goals in resolving ambiguous mappings (Simulation 3, based on
Spellman & Holyoak, 1996). By varying the model’s global empha-
sis on lexical concept (node) versus relation (edge) similarity, it is
possible to account for the developmental shift in sensitivity to
relations; in addition, the model can capture the influence of text
coherence (systematicity) without assuming access to higher-order
propositions (Simulation 4, based on Gentner & Toupin, 1986). By
adding NLP-assisted preprocessing to extract key concepts from text
inputs, the model can solve analogies between nonisomorphic
problems posed in short texts (Simulation 5, based on Gick &
Holyoak, 1980). The model also provides a measure of global
similarity between analogs, which can be applied to support the
retrieval of plausible source analogs from memory, and accounts for
the partial dissociation between the impact of different types of
similarity on retrieval versus mapping (Simulation 6, based on
Keane, 1987; Simulation 7, based on Turney, 2008).

The use of semantic relation networks in analogical mapping is
consistent with empirical evidence that human memory and com-
prehension are reconstructive in nature, and heavily dependent on
prior semantic knowledge (Kintsch, 1988; Van Overschelde &
Healy, 2001). PAM captures the human ability to reason by analogy
in a domain-general manner, without requiring extensive training
with analogy problems in any particular domain. The model’s
success in accounting for a range of phenomena observed in studies
of human analogical mapping, as well as analog retrieval, illustrates
how distributed representations capturing rich semantics of concepts
and relations can effectively accomplish tasks that are usually
associated with symbolic reasoning (Carstensen & Frank, 2021;
Holyoak & Lu, 2021).

PAM represents the continuing evolution over the past four
decades of models of human analogical mapping based on represen-
tation matching. An early hypothesis was that mapping is based
solely on structure and not on content (Gentner, 1983); however,
empirical evidence led subsequent computational models to add
constraints based on semantic content and pragmatic factors (e.g.,
Forbus et al., 2017; Gentner et al., 1993; Holyoak, 1985; Holyoak &
Thagard, 1989). In PAM, not only individual concepts (nodes in a
semantic relation graph) but also semantic relations themselves
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(edges) are defined by rich semantic vectors. As demonstrated in
comparisons between the performance of PAMusing relation vectors
generated by BART versus Word2vec-diff, mapping performance
can differ radically depending on semantic content even when the
form (structure) of the semantic relation networks being compared is
held constant (see model comparisons in Supplemental Information,
especially for Simulations 1 and 5). In general, for the simulations
reported here, PAM approaches human levels of performance only
when it operates on relation vectors provided by BART. The present
computational results are in accord with previous evidence that
BART, but not Word2vec-diff, generates semantic relation vectors
that can account for human patterns of relational similarity judgments
(Ichien, Lu, et al., 2021) as well as patterns of neural similarity
among relations observed during analogical reasoning (Chiang et al.,
2021). At the same time, Word2vec proved very effective in
providing semantic vectors for individual concepts (nodes), which
are also crucial for PAM’s performance. Perhaps most notably,
subtle variations in patterns of node similarity predicted a
previously-unexplained asymmetry in resolution of an ambiguous
mapping, observed in a study by Spellman and Holyoak (1996;

Simulation 3). Thus semantic content—of both concepts and
relations—is fundamental to human analogical mapping.

Like previous models in the tradition of representation matching,
PAM is able to capture the human ability to perform zero-shot
learning by analogical transfer. In the spirit of other recent work in
this tradition (Doumas et al., 2022; Forbus et al., 2017), the model
makes progress (though still incomplete) toward achieving a key
aim emphasized by end-to-end models: automating the generation
of analog representations. PAM, coupled with Word2vec and
BART, enables semiautomated generation of the inputs to the
mapping module for analogies presented in verbal form, either as
sets of keywords or as short texts. When the inputs are texts, the
initial extraction of key concepts and their relations is aided by NLP
techniques that serve as proxies (albeit imperfect) for human text
comprehension. Given the limitations of the NLP techniques we
have so far explored, this process requires some human intervention.
But once the nodes and edges in semantic relation graphs have been
specified, the remainder of the mapping process is fully automated.
By building a mapping model on top of learning mechanisms
grounded in distributional semantics, we can draw closer to the
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Figure 9
Representative Examples, for Each of Four Target Analogs, of the Distribution of G Scores Across 20 Alternative Source Analogs

Note. Each panel shows scores for one target in Turney’s (2008) dataset; the horizontal axis indicates 20 possible source analogs (labels identified in Table 2).
A: respiration correctly and unambiguously maps to combustion; B: sound waves map to sound waves (very near analog) closely followed by water waves
(intended far analog); C: argument following correctly and unambiguously maps to path following; D: reasons for a theory maps correctly to grounds for a
building, followed closely by two alternative source analogs. See the online article for the color version of this figure.
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goal of being able to automate analogical reasoning for natural-
language inputs.

Forms of Relational Representation

The BART/PAM framework for learning relations and reasoning
with them exemplifies the general view that (at least for humans)
relational knowledge in acquired by a series of rerepresentations
(Penn et al., 2008). These successive representations of relational
knowledge lie on a continuum from highly implicit to increasingly
explicit (see Doumas & Hummel, 2012). Within the model pre-
sented in the present paper, four distinct representations that include
relational information can be distinguished. (a) Word embeddings
created by Word2vec take the form of densely distributed vectors
representing the meanings of individual concepts (words). Within
these embeddings, some features carry relational information, but in
an implicit and “entangled” manner (Moradshahi et al., 2021). To
take a hypothetical example, the embeddings for the words rich and
poor may each include features associated (in a probabilistic
manner) with such relational concepts as money, continuous quan-
tity, and relative extremity. (b) Given word pairs that form positive
and negative examples of a target relation, the learning mechanisms
in BART take advantage of statistical information coded by Word2-
vec features (coupled with derived features created by reordering
based on the magnitudes of feature differences between the words in
a pair) to generate a weight distribution over word features, thereby
predicting the posterior probability of the target relation (e.g.,
opposite). This weight distribution for a relation provides a new
implicit representation that captures the relative importance of
various word features in predicting the relation. (c) The computed
posterior probability that the target relation holds is then treated as a
representation of the degree to which a word pair satisfies the
relation, coded as the value of a disentangled “relation feature”
in a new representational space of relations. (d) BART forms an
explicit semantic-relation vector composed of values (i.e., posterior
probabilities) of the features corresponding to its learned relations.
As a disentangled and explicit (though distributed) representation,
this vector makes it possible to form PAM graphs in which the
specific relation between two words (edge attribute) is distinct from
the meanings of the individual keywords being related (node
attributes). Importantly, these successive relation representations
do not replace one another, but rather support complementary
cognitive abilities. Most notably, the weight distributions learned
by BART accomplish the eduction of relations for any word pair,
whereas the resulting semantic vectors allow analogical compar-
isons (the eduction of correlates).
Semantic relation vectors do not exhaust the forms in which

relational knowledge can be represented. These vectors are distinct
from verbs and other linking words that constitute multiplace
predicates in natural language—a yet more explicit form of relation
representation. The relation vector for a particular pair of words need
not correspond to a predicate; however, specific relation features
(individually or as a set) may be linked to corresponding predicates
(e.g., contrast features might be connected to the phrase “is opposite
of,” and part-whole features to “is a part of”). At the same time, most
verbs and other multiplace predicates (e.g., chase, kill, love, give)
probably do not directly correspond to features in a semantic relation
vector. Philosophers have distinguished between relations that are
internal—those that hold by nature of the terms they relate—versus

external (e.g., Clementz, 2014). Word embeddings tend to capture
generic information about concepts (Cimpian & Markman, 2008;
Graham et al., 2016)—properties that are intrinsic to the meaning of
the words (pansy is a type of flower) or highly typical (read is an
action performed on a book). Given that the semantic relations
learned by BART are extracted from generic feature representations
of their relata (i.e., word embeddings), these relations can be
construed as internal. Semantic relation vectors thus focus on
internal relations between generic word meanings, whereas predi-
cates of a natural language can refer to all types of relations. Thus a
model such as BART, which aims to learn semantic relation vectors,
has a different (though ultimately related) goal than does a model
such as DORA (Doumas et al., 2008), which focuses on learning
predicates.

Coding Sentential Information in Semantic
Relation Graphs

PAM operates on attributed graphs consisting of nodes represent-
ing individual concepts and edges representing the educed relations
between concepts (Spearman, 1923), rather than on structured
propositions as assumed by previous models of analogical mapping
in the tradition of representation matching. An important issue
concerns whether and how semantic relation networks can capture
the detailed structural information provided by sentences of natural
language (or by abstract propositions derived from sentences). An
obvious limitation of semantic relation vectors is that all relations
are binary (connecting two words), whereas the predicates of natural
language also include (at least) ternary relations (b is between a and
c; x gave y to z). In our simulations of analogies expressed by text,
we introduced a convention for coding subject-verb-object sen-
tences as sets of unidirectional edges in a graph (e.g., “dog chases
cat” becomes the trio of binary relations dog : chase, chase : cat, dog
: cat). This convention captures at least part of the relational
structure conveyed by simple sentences, enabling PAM to predict
the greater difficulty of cross mappings (see Simulation 4 based on
Gentner & Toupin, 1986). The basic approach of translating simple
sentences into a set of unidirectional binary links could be extended
to sentences that include an indirect object (e.g., “The boy gave a
book to the girl”), which express ternary relations. By adopting NLP
techniques that create relatively “flat” syntactic parses (perhaps with
a version of dependency grammar; see Jurafsky & Martin, 2021,
Chapter 14), the general approach could be further extended to
handle sentential complements (a type of sentence embedding), such
as “The woman believed that the boy loved the girl.” Moreover, a
parser could be used to augment semantic relation vectors with
features indicating syntactic (e.g., subject vs. object) and/or thematic
roles (e.g., agent vs. patient).

It remains an open question whether analogical mapping requires
sensitivity to aspects of relations that cannot be fully captured by
semantic relation networks. It has often been claimed that analogical
mapping (at least for older children and adults) depends on repre-
sentations of “higher-order” relations (those that take propositions
as arguments, typically corresponding to verbs that take sentential
complements). Higher-order relations have been assumed to
increase the “systematicity” of mappings (Gentner, 1983). However,
Simulation 4 (Gentner & Toupin, 1986) raises the possibility that at
least some evidence for the impact of systematicity can be explained
without positing access to higher-order relations at all. An
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alternative general explanation is that mapping benefits from greater
text coherence (Kintsch, 1988), which does not necessarily depend
on higher-order propositions. Within the PAM model, mapping
performance will generally be facilitated by any and all textual cues
that establish unambiguous semantic relations between multiple
pairs of interconnected keywords.
In fact, the majority of studies that have been interpreted as

supporting the special importance of higher-order relations in
mapping solely involve the relation cause, which has been treated
as a higher-order relation between propositions describing events
(e.g., Clement & Gentner, 1991; Forbus et al., 2017; Gentner et al.,
1993). However, linguistic evidence casts doubt on this representa-
tional assumption. Verbs that express direct causation commonly
appear in single-clause sentences (e.g., “The boy broke the vase”),
rather than taking sentential complements (Kemmer & Verhagen,
1994; Wolff, 2003). Moreover, other relations that appear syntacti-
cally equivalent to cause (e.g., temporally prior to) do not support
analogical inferences in the same manner (Lassaline, 1996). Indeed,
causal relations have long been viewed as having a special status in
analogical reasoning—not because of their syntactic form, but
because of their pragmatic relevance to goal attainment and hence
analogical inference (Holyoak, 1985; Winston, 1980). Theories of
causal reasoning have treated causal relations not as static predicates
attached to higher-order propositions, but rather as active compo-
nents of causal networks that generate inferences (Holyoak &
Cheng, 2011; Pearl, 2009; Waldmann & Hagmayer, 2013). Ana-
logical inferences are sensitive to such basic distinctions as that
between generative and preventive causes, and predictive (cause to
effect) versus diagnostic (effect to cause) inferences (Holyoak et al.,
2010; Lee & Holyoak, 2008). Thus although causal relations indeed
have special properties, their impact on analogical reasoning may
have little to do with the syntactic form of causal propositions.

Limitations and Future Directions

Whatever role (direct or indirect) that propositions may play in
analogical mapping, such representations are likely to be important
for other aspects of analogical reasoning. In particular, PAM has yet
to be extended to address the later stages, inference and schema
induction. While semantic relation networks enable flexible and
computationally-efficient analogical mapping, more detailed prop-
ositional representations (or at least the syntax of natural language)
may well be required to enable construction of explanations for
mappings, and to aid in the generation of structured analogical
inferences. The immediate output of PAM is simply a set of
mappings between individual keywords from the source and target.
However, if the analogs were presented as structured text, the basic
algorithm of “copy with substitution” (CWS; Holyoak et al., 1994)
can be used to generate analogical inferences. For example, the
mapping between the General story and the radiation problem
(Simulation 5) yields correspondences that include commander →
doctor and army → ray. If the source contains the sentence,
“The commander divides the army,”CWSwould yield the inference
“The doctor divides the ray”—a valuable aid in constructing a
parallel convergence solution to the radiation problem. More gen-
erally, the two types of explicit relation representations (semantic
relations and predicate-centered propositions) may prove to be
complementary. PAM can construct semantic relation networks
and use them to produce a quick sketch of the mapping between

two analogs, coupled with an evaluation of overall mapping quality.
If the mapping appears to be promising, propositional representa-
tions can potentially be used to develop the mapping in greater detail
and to generate inferences from it.

A number of extensions of the PAM model appear feasible. The
relation vectors provided by BART could be improved by training
the model on a broader range of relations, particularly the types of
thematic relations that link verbs with nouns. Mapping could in
principle be based in part on embeddings of concepts derived from
larger units than words, including sentences (Devlin et al., 2019),
and visual embeddings derived from images via convolutional
neural networks. PAM’s procedure for iterative updating of the
mapping matrix could include a “slack” column allowing concepts
that do not map well to go unmatched. The iterative search for an
optimal mapping might allow the value of the α parameter to vary
(i.e., seeking a trade-off between a focus on node vs. edge similarity
that maximizes mapping quality), using the approach of hierarchical
Bayesian modeling. A further extension might allow the search for
an optimal mapping to include variations in the encodings of the
analogs, as suggested by the Copycat model (Hofstadter &Mitchell,
1994). Such extensions are likely to lead to a greater emphasis on
sequential processing, which is likely necessitated by capacity
constraints on human analogical reasoning (Halford, Bain, et al.,
1998; Hummel & Holyoak, 1997; Keane & Brayshaw, 1988).

Although the present paper deals only with verbal analogies,
PAM can be used to perform mapping given any system for
assigning vectors as attributes of nodes and edges in a graph.
The model could therefore be adapted to solve mappings based
on perceptual inputs such as pictures, given that relevant object
features and perceptual relations have been identified. Relation
vectors for meaningful pictures can potentially be formed as hybrids
of features provided by perceptual processes and by semantic
knowledge about concepts (Lu, Liu, et al., 2019). It seems possible
that even formal relations, such as those used in psychological
studies of the acquisition of relational schemas (Halford, Bain, et al.,
1998; Halford & Busby, 2007; Phillips, 2021), as well as those that
occur in mathematics, can also be represented by relation vectors
with semantic content. Indeed, studies such as that by Halford, Bain,
et al. (1998) have shown that learning of new formal relations can be
facilitated by encouraging participants to map them onto known
meaningful relations. Similarly, people’s interpretation and use of
arithmetic operations appears to be guided by semantic alignment
between mathematical and real-life situations. The entities in a
problem situation evoke semantic relations (e.g., tulips and vases
evoke the functionally asymmetric contain relation), which people
align with analogous mathematical relations (e.g., the noncommu-
tative division operation: tulips/vases; Bassok et al., 1998; Bassok &
Olseth, 1995). A similar form of semantic alignment guides the use
of different formats for rational numbers—fractions and decimals.
Adults in the U.S. and South Korea (Lee et al., 2016), as well as
Russia (Tyumeneva et al., 2018), selectively use fractions and
decimals to model discrete (i.e., countable) and continuous entities,
respectively. Favored semantic alignments may reflect selective
similarities between relation vectors that represent mathematical
and real-world relations.

PAMmay be able to contribute to efforts to automate the discovery
of analogies in online databases (e.g., by searching an inventory of
patents for inventions). A processing pipeline might use algorithms
for natural language processing to summarize texts stored in electronic
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form and to extract key concepts coupled with basic syntax. The
extracted information would then be processed to form knowledge
graphs with rich semantics for concepts and relations, which could in
turn be passed to PAM to identify potential source analogs relevant to
solving a specified target problem. Our broader aim is to foster the
evolving synergy between theoretical ideas drawn from AI and from
cognitive science, in order both to understand human reasoning more
fully and to enhance the reasoning capacities of machines.

References

Andersen, S. M., Glassman, N. S., Chen, S., & Cole, S. W. (1995).
Transference in social perception: The role of chronic accessibility in
significant-other representations. Journal of Personality and Social Psy-
chology, 69, 41–57. https://doi.org/10.1037/0022-3514.69.1.41

Anderson, J. R., & Milson, R. (1989). Human memory: An adaptive
perspective. Psychological Review, 96(4), 703–719. https://doi.org/10
.1037/0033-295X.96.4.703

Barrett, D. G. T., Hill, F., Santoro, A., Morcos, A. S., & Lillicrap, T. (2018).
Measuring abstract reasoning in neural networks. arXiv: 1807.04225.

Bassok, M., Chase, V. M., & Martin, S. A. (1998). Adding apples and
oranges: Alignment of semantic and formal knowledge. Cognitive Psy-
chology, 35, 99–134. https://doi.org/10.1006/cogp.1998.0675

Bassok, M., & Olseth, K. L. (1995). Object-based representations: Transfer
between continuous and discrete models of change. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 21, 1522–1538.
https://doi.org/10.1037/0278-7393.21.6.1522

Battleday, R. M., Peterson, T. L., & Griffiths, T. L. (2020). Capturing human
categorization of natural images by combining deep networks and cogn-
tive models. Nature Communications, 11(1), 1–14. https://doi.org/10
.1038/s41467-020-18946-z

Bejar, I. I., Chaffin, R., & Embretson, S. (1991). Cognitive and psychometric
analysis of analogical problem solving. Springer. https://doi.org/10.1007/
978-1-4613-9690-1

Bhatia, S. (2017). Associative judgment and vector space semantics. Psy-
chological Review, 124(1), 1–20. https://doi.org/10.1037/rev0000047

Bhatia, S., & Richie, R. (in press). Transformer networks of human concep-
tual knowledge [Preprint available at PsyArXiv]. Psychological Review.
https://doi.org/10.31234/osf.io/hs4ra

Bhatia, S., Richie, R., & Zou, W. (2019). Distributed semantic representa-
tions for modeling human judgment. Current Opinion in Behavioral
Sciences, 29, 31–36. https://doi.org/10.1016/j.cobeha.2019.01.020

Blanchette, I., & Dunbar, K. (2000). Analogy use in naturalistic settings: The
influence of audience, emotion, and goal. Memory and Cognition, 28,
108–124. https://doi.org/10.3758/BF03211580

Blanchette, I., & Dunbar, K. (2001). How analogies are generated: The roles
of structural and superficial similarity. Memory and Cognition, 29, 730–
735. https://doi.org/10.3758/BF03200475

Carstensen, A., & Frank, M. C. (2021). Do graded representations support
abstract thought? Current Opinion in Behavioral Sciences, 37, 90–97.
https://doi.org/10.1016/j.cobeha.2020.10.009

Carstensen, A., Zhang, J., Heyman, G. D., Fu, G., Lee, K., & Walker, C. M.
(2019). Context shapes early diversity in abstract thought. Proceedings of
the National Academy of Sciences of the United States of America,
116(28), 13891–13896. https://doi.org/10.1073/pnas.1818365116

Chan, J., & Schunn, C. (2015). The impact of analogies on creative concept
generation: Lessons from an in vivo study in engineering design. Cogni-
tive Science, 39, 126–155. https://doi.org/10.1111/cogs.12127

Chen, D., Lu, H., & Holyoak, K. J. (2017). Generative inferences based on
learned relations. Cognitive Science, 41(Suppl. 5), 1062–1092. https://
doi.org/10.1111/cogs.12455

Chiang, J. N., Peng, Y., Lu, H., Holyoak, K. J., & Monti, M. M. (2021).
Distributed code for semantic relations predicts neural similarity during

analogical reasoning. Journal of Cognitive Neuroscience, 33(3), 377–389.
https://doi.org/10.1162/jocn_a_01620

Cimpian, A., & Markman, E. M. (2008). Preschool children’s use of cues to
generic meaning. Cognition, 107, 19–53. https://doi.org/10.1016/j.cognition
.2007.07.008

Clement, C. A., & Gentner, D. (1991). Systematicity as a selection constraint
on analogical mapping. Cognitive Science, 15, 89–132. https://doi.org/10
.1207/s15516709cog1501_3

Clementz, F. (2014). Internal, formal and thin relations. In A. Reboul (Ed.),
Mind, values, and metaphysics: Philosophical essays in honour of Kevin
Mulligan (Vol. 1, pp. 207–223). Springer.

Cour, T., Srinivasan, P., & Shi, J. (2006). Balanced graph matching. In B.
Schölkopf, J. Platt, & T. Hofmann (Eds.), Advances in neural information
processing systems (Vol. 19, pp. 313–320). MIT Press.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-
training of deep bidirectional transformers for language understanding. In
J. Bustein, C. Doran, & T. Solorio (Eds.), Proceedings of the 2019
conference of the North American chapter of the Association for Compu-
tational Linguistics: Human language technologies (Vol. 1, pp. 4171–
4186). Association for Computational Llinguistics.

Doumas, L. A. A., & Hummel, J. E. (2012). Computational models of higher
cognition. In K. J. Holyoak & R. G. Morrison (Eds.), The Oxford
handbook of thinking and reasoning (pp. 52–66). Oxford University Press.

Doumas, L. A. A., Hummel, J. E., & Sandhofer, C.M. (2008). A theory of the
discovery and predication of relational concepts. Psychological Review,
115(1), 1–43. https://doi.org/10.1037/0033-295X.115.1.1

Doumas, L.A.A., Puebla, G.,Martin, A. E.,&Hummel, J. E. (2022).A theory of
relation learning and cross-domain generalization. Psychological Review,
129(5), 999–1041. https://doi.org/10.1037/rev0000346

Dunbar, K. N., &Klahr, D. (2012). Scientific thinking and reasoning. In K. J.
Holyoak & R. G. Morrison (Eds.), Oxford handbook of thinking and
reasoning (pp. 701–718). Oxford University Press.

Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5),
i–113. https://doi.org/10.1037/h0093599

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure
mapping engine: Algorithm and examples. Artificial Intelligence, 41(1),
1–63. https://doi.org/10.1016/0004-3702(89)90077-5

Forbus, K. D., Ferguson, R.W., Lovett, A., & Gentner, D. (2017). Extending
SME to handle large-scale cognitive modeling. Cognitive Science, 41(5),
1152–1201. https://doi.org/10.1111/cogs.12377

Forbus, K. D., Gentner, D., & Law, K. (1995). MAC/FAC: A model of
similarity-based retrieval. Cognitive Science, 19(2), 141–205. https://
doi.org/10.1207/s15516709cog1902_1

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy.
Cognitive Science, 7, 155–170. https://doi.org/10.1207/s15516709cog0702_3

Gentner, D. (2010). Bootstrapping the mind: Analogical processes and
symbol systems. Cognitive Science, 34, 752–775. https://doi.org/10
.1111/j.1551-6709.2010.01114.x

Gentner, D., & Rattermann, M. J. (1991). Language and the career of
similarity. In S. A. Gelman & J. P. Byrnes (Eds.), Perspectives on
language and thought (pp. 225–277). Cambridge University Press.
https://doi.org/10.1017/CBO9780511983689.008

Gentner, D., Rattermann, M. J., & Forbus, K. D. (1993). The roles of similarity
in transfer: Separating retrievability from inferential soundness. Cognitive
Psychology, 25, 524–575. https://doi.org/10.1006/cogp.1993.1013

Gentner, D., & Toupin, C. (1986). Systematicity and surface similarity in the
development of analogy. Cognitive Science, 10(3), 277–300. https://
doi.org/10.1207/s15516709cog1003_2

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving.
Cognitive Psychology, 12(3), 306–355. https://doi.org/10.1016/0010-
0285(80)90013-4

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical
transfer. Cognitive Psychology, 15, 1–38. https://doi.org/10.1016/0010-
0285(83)90002-6

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

1100 LU, ICHIEN, AND HOLYOAK

https://doi.org/10.1037/0022-3514.69.1.41
https://doi.org/10.1037/0022-3514.69.1.41
https://doi.org/10.1037/0022-3514.69.1.41
https://doi.org/10.1037/0022-3514.69.1.41
https://doi.org/10.1037/0022-3514.69.1.41
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1037/0033-295X.96.4.703
https://doi.org/10.1006/cogp.1998.0675
https://doi.org/10.1006/cogp.1998.0675
https://doi.org/10.1006/cogp.1998.0675
https://doi.org/10.1006/cogp.1998.0675
https://doi.org/10.1037/0278-7393.21.6.1522
https://doi.org/10.1037/0278-7393.21.6.1522
https://doi.org/10.1037/0278-7393.21.6.1522
https://doi.org/10.1037/0278-7393.21.6.1522
https://doi.org/10.1037/0278-7393.21.6.1522
https://doi.org/10.1038/s41467-020-18946-z
https://doi.org/10.1038/s41467-020-18946-z
https://doi.org/10.1007/978-1-4613-9690-1
https://doi.org/10.1007/978-1-4613-9690-1
https://doi.org/10.1007/978-1-4613-9690-1
https://doi.org/10.1037/rev0000047
https://doi.org/10.1037/rev0000047
https://doi.org/10.31234/osf.io/hs4ra
https://doi.org/10.31234/osf.io/hs4ra
https://doi.org/10.31234/osf.io/hs4ra
https://doi.org/10.1016/j.cobeha.2019.01.020
https://doi.org/10.1016/j.cobeha.2019.01.020
https://doi.org/10.1016/j.cobeha.2019.01.020
https://doi.org/10.1016/j.cobeha.2019.01.020
https://doi.org/10.1016/j.cobeha.2019.01.020
https://doi.org/10.1016/j.cobeha.2019.01.020
https://doi.org/10.3758/BF03211580
https://doi.org/10.3758/BF03211580
https://doi.org/10.3758/BF03200475
https://doi.org/10.3758/BF03200475
https://doi.org/10.1016/j.cobeha.2020.10.009
https://doi.org/10.1016/j.cobeha.2020.10.009
https://doi.org/10.1016/j.cobeha.2020.10.009
https://doi.org/10.1016/j.cobeha.2020.10.009
https://doi.org/10.1016/j.cobeha.2020.10.009
https://doi.org/10.1016/j.cobeha.2020.10.009
https://doi.org/10.1073/pnas.1818365116
https://doi.org/10.1073/pnas.1818365116
https://doi.org/10.1073/pnas.1818365116
https://doi.org/10.1111/cogs.12127
https://doi.org/10.1111/cogs.12127
https://doi.org/10.1111/cogs.12127
https://doi.org/10.1111/cogs.12455
https://doi.org/10.1111/cogs.12455
https://doi.org/10.1111/cogs.12455
https://doi.org/10.1111/cogs.12455
https://doi.org/10.1162/jocn_a_01620
https://doi.org/10.1162/jocn_a_01620
https://doi.org/10.1016/j.cognition.2007.07.008
https://doi.org/10.1016/j.cognition.2007.07.008
https://doi.org/10.1016/j.cognition.2007.07.008
https://doi.org/10.1016/j.cognition.2007.07.008
https://doi.org/10.1016/j.cognition.2007.07.008
https://doi.org/10.1016/j.cognition.2007.07.008
https://doi.org/10.1207/s15516709cog1501_3
https://doi.org/10.1207/s15516709cog1501_3
https://doi.org/10.1037/0033-295X.115.1.1
https://doi.org/10.1037/0033-295X.115.1.1
https://doi.org/10.1037/0033-295X.115.1.1
https://doi.org/10.1037/0033-295X.115.1.1
https://doi.org/10.1037/0033-295X.115.1.1
https://doi.org/10.1037/rev0000346
https://doi.org/10.1037/rev0000346
https://doi.org/10.1037/h0093599
https://doi.org/10.1037/h0093599
https://doi.org/10.1016/0004-3702(89)90077-5
https://doi.org/10.1016/0004-3702(89)90077-5
https://doi.org/10.1111/cogs.12377
https://doi.org/10.1111/cogs.12377
https://doi.org/10.1111/cogs.12377
https://doi.org/10.1207/s15516709cog1902_1
https://doi.org/10.1207/s15516709cog1902_1
https://doi.org/10.1207/s15516709cog1902_1
https://doi.org/10.1207/s15516709cog0702_3
https://doi.org/10.1207/s15516709cog0702_3
https://doi.org/10.1111/j.1551-6709.2010.01114.x
https://doi.org/10.1111/j.1551-6709.2010.01114.x
https://doi.org/10.1111/j.1551-6709.2010.01114.x
https://doi.org/10.1111/j.1551-6709.2010.01114.x
https://doi.org/10.1111/j.1551-6709.2010.01114.x
https://doi.org/10.1111/j.1551-6709.2010.01114.x
https://doi.org/10.1017/CBO9780511983689.008
https://doi.org/10.1017/CBO9780511983689.008
https://doi.org/10.1017/CBO9780511983689.008
https://doi.org/10.1006/cogp.1993.1013
https://doi.org/10.1006/cogp.1993.1013
https://doi.org/10.1006/cogp.1993.1013
https://doi.org/10.1006/cogp.1993.1013
https://doi.org/10.1207/s15516709cog1003_2
https://doi.org/10.1207/s15516709cog1003_2
https://doi.org/10.1207/s15516709cog1003_2
https://doi.org/10.1016/0010-0285(80)90013-4
https://doi.org/10.1016/0010-0285(80)90013-4
https://doi.org/10.1016/0010-0285(80)90013-4
https://doi.org/10.1016/0010-0285(83)90002-6
https://doi.org/10.1016/0010-0285(83)90002-6
https://doi.org/10.1016/0010-0285(83)90002-6


Gold, S., & Rangarajan, A. (1996). A graduated assignment algorithm for
graph matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(4), 377–388. https://doi.org/10.1109/34.491619

Goldstone, R. L. (1994). Similarity, interactive activation, and mapping.
Journal of Experimental Psychology: Learning, Memory, and Cognition,
20, 3–28. https://doi.org/10.1037/0278-7393.20.1.3

Goldstone, R. L., & Medin, D. L. (1994). The time course of comparison.
Journal of Experimental Psychology: Learning, Memory, and Cognition,
20, 29–50. https://doi.org/10.1037/0278-7393.20.1.29

Goldstone, R. L., Medin, D. L., & Gentner, D. (1991). Relational similarity and
the nonindependence of features in similarity judgments. Cognitive Psychol-
ogy, 23(2), 222–262. https://doi.org/10.1016/0010-0285(91)90010-L

Goldstone, R. L., & Rogosky, B. J. (2002). Using relations within conceptual
systems to translate across conceptual systems. Cognition, 84, 295–320.
https://doi.org/10.1016/S0010-0277(02)00053-7

Goldwater, M. B., Bainbridge, R., &Murphy, G. L. (2016). Learning of role-
governed and thematic categories. Acta Psychologica, 164, 112–126.
https://doi.org/10.1016/j.actpsy.2015.10.011

Goldwater, M. B., Gentner, D., LaDue, N. D., & Libarkin, J. C. (2021).
Analogy generation in science experts and novices. Cognitive Science,
45(9), Article e13036. https://doi.org/10.1111/cogs.13036

Goldwater, M. B., & Markman, A. B. (2011). Categorizing entities by
common role. Psychonomic Bulletin & Review, 18, 406–413. https://
doi.org/10.3758/s13423-011-0058-0

Goldwater, M. B., Markman, A. B., & Stilwell, C. H. (2011). The empirical
case for role-governed categories. Cognition, 118, 359–376. https://
doi.org/10.1016/j.cognition.2010.10.009

Graham, S. A., Gelman, S. A., & Clarke, J. (2016). Generics license 30-
month-olds’ inferences about the atypical properties of novel kinds.
Developmental Psychology, 52, 1353–1362. https://doi.org/10.1037/de
v0000183

Halford, G. S., Bain, J. D., Maybery, M. T., &Andrews, G. (1998). Induction
of relational schemas: Common processes in reasoning and complex
learning. Cognitive Psychology, 35, 201–245. https://doi.org/10.1006/
cogp.1998.0679

Halford, G. S., & Busby, J. (2007). Acquisition of structured knowledge
without instruction: The relational schema induction paradigm. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 33, 586–
603. https://doi.org/10.1037/0278-7393.33.3.586

Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity
defined by relational complexity: Implications for comparative, develop-
mental, and cognitive psychology. Behavioral and Brain Sciences, 21(6),
803–831. https://doi.org/10.1017/S0140525X98001769

Halford, G. S., Wilson, W. H., & Phillips, S. (2010). Relational knowledge:
The foundation of higher cognition. Trends in Cognitive Sciences, 14,
497–505. https://doi.org/10.1016/j.tics.2010.08.005

Hill, F., Reichart, R., & Korhonen, A. (2015). SimLex-999: Evaluating
semantic models with (genuine) similarity estimation. Computational
Linguistics, 41(4), 665–695. https://doi.org/10.1162/COLI_a_00237

Hill, F., Santoro, A., Barrett, D.,Morcos, A., & Lillicrap, T. (2019). Learning
to make analogies by contrasting abstract relational structure [Confer-
ence session]. Proeedings of the International Conference on Learning
Representations, New Orleans, Louisiana, United States.

Hofmann, M. J., Biemann, C., Westbury, C., Murusidze, M., Conrad, M., &
Jacobs, A. M. (2018). Simple co-occurrence statistics reproducibly predict
association ratings. Cognitive Science, 42(7), 2287–2312. https://doi.org/
10.1111/cogs.12662

Hofstadter, D. R., & Mitchell, M. (1994). The Copycat project: A model of
mental fluidity and analogy-making. In K. J. Holyoak & J. A. Barnden
(Eds.), Advances in connectionist and neural computation theory (Vol. 2,
pp. 31–112). Ablex.

Holyoak, K. J. (1985). The pragmatics of analogical transfer. In G. H. Bower
(Ed.), The psychology of learning and motivation (Vol. 19, pp. 59–87).
Academic Press.

Holyoak, K. J. (2012). Analogy and relational reasoning. In K. J. Holyoak &
R. G. Morrison (Eds.), Oxford handbook of thinking and reasoning (pp.
234–259). Oxford University Press. https://doi.org/10.1093/oxfordhb/
9780199734689.001.0001

Holyoak, K. J. (2019). The spider’s thread: Metaphor in mind, brain, and
poetry. MIT Press. https://doi.org/10.7551/mitpress/11119.001.0001

Holyoak, K. J., & Cheng, P. W. (2011). Causal learning and inference as a
rational process: The new synthesis. Annual Review of Psychology, 62,
135–163. https://doi.org/10.1146/annurev.psych.121208.131634

Holyoak, K. J., Junn, E. N., & Billman, D. O. (1984). Development of
analogical problem-solving skill. Child Development, 55(6), 2042–2055.
https://doi.org/10.2307/1129778

Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in
analogical transfer.Memory & Cognition, 15, 332–340. https://doi.org/10
.3758/BF03197035

Holyoak, K. J., Lee, H. S., & Lu, H. (2010). Analogical and category-based
inference: A theoretical integration with Bayesian causal models. Journal
of Experimental Psychology: General, 139, 702–727. https://doi.org/10
.1037/a0020488

Holyoak, K. J., & Lu, H. (2021). Emergence of relational reasoning. Current
Opinion in Behavioral Sciences, 37, 118–124. https://doi.org/10.1016/j
.cobeha.2020.11.012

Holyoak, K. J., & Monti, M. M. (2021). Relational integration in the human
brain: A review and synthesis. Journal of Cognitive Neuroscience, 33,
341–356. https://doi.org/10.1162/jocn_a_01619

Holyoak, K. J., Novick, L. R., &Melz, E. R. (1994). Component processes in
analogical transfer: Mapping, pattern completion, and adaptation. In K. J.
Holyoak & J. A. Barnden (Eds.), Advances in connectionist and neural
computation theory: Analogical connections (Vol. 2, pp. 113–180). Ablex.
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