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In situ bidirectional human-robot value alignment
Luyao Yuan1*†, Xiaofeng Gao2†, Zilong Zheng1,3†, Mark Edmonds1*, Ying Nian Wu2, 
Federico Rossano4, Hongjing Lu2,5*, Yixin Zhu2,3,6*, Song-Chun Zhu1,2,3,6*

A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles 
simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situ-
ations with multiple goals that differ in importance, failure to fulfill the expectation of either role could under-
mine group performance due to misalignment of values between humans and robots. Specifically, a robot needs 
to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive 
speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional 
human-robot communications in the context of value alignment—collaborative robots and users form an aligned 
understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) 
system in which a group of robots predicts users’ values by taking in situ feedback into consideration while com-
municating their decision processes to users through explanations. To learn from human feedback, our XAI 
system integrates a cooperative communication model for inferring human values associated with multiple desir-
able goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal 
explanations using graphical models. We conducted psychological experiments to examine the core components 
of the proposed computational framework. Our results show that real-time human-robot mutual understanding 
in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We 
believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI 
systems and, more broadly, in future human-machine teaming systems.

INTRODUCTION
At the dawn of artificial intelligence (AI), Wiener (1) identified the 
foundation of collaborative robots with the warning “if we use, to 
achieve our purposes, a mechanical agency with whose operation 
we cannot interfere effectively ... we had better be quite sure that the 
purpose put into the machine is the purpose which we really desire.” 
Since then, several efforts (2, 3) have demonstrated that effective 
human-robot collaboration depends on a shared team mental mod-
el that includes values (4), goals (5), and current states of the task 
(5). To achieve a shared team mental model, humans use communi-
cation as an efficient tool to establish a common team understand-
ing of task expectations, with team members adopting anticipatory 
information-sharing strategies to accomplish collaborative tasks 
(6, 7). In most cases, the sharing process is bidirectional among col-
laborators, because each teammate needs to fulfill the roles of both 
speaker and listener (providing private task-relevant information to 
partners while also accurately comprehending teammates’ messages). 
Successful communication in human-robot collaboration can be 
signaled by bidirectional value alignment, with robots accurately 
inferring human values, combined with effective explanations of the 
robot’s behavior to humans. If these prerequisites are not met, the 
collaboration may encounter unforeseeable difficulties due to erro-
neous expectations of teammates (8). Thus, for robots to become 

beneficial collaborators in human society, they must be receptive 
listeners and expressive speakers when interacting with their hu-
man teammates.

From the listener’s perspective, algorithms such as inverse rein-
forcement learning (IRL) (9) combine human interactive data with 
conventional machine learning methods to learn human values in 
specific tasks (10, 11). Assuming (sub-)optimal behavior from hu-
man experts, IRL aims to recover the underlying reward function 
that guides human demonstration. However, acquiring human data 
in some application domains that arise in military and health care 
contexts can be expensive, if not impossible. Dependence on large 
datasets also prevents these methods from tackling in situ, real-time, 
and interactive human-robot collaboration scenarios. From the 
speaker’s perspective, explainable artificial intelligence (XAI) was 
introduced to facilitate the alignment of mental models between 
humans and robots (12). However, existing XAI systems typically 
emphasize the generation of interpretable rationales to explain 
model decisions or predictions, either unfolding the model for a 
human user to probe and inspect (12–16) or reconciling the dis-
crepancy between the human user’s mental model and the robot’s 
counterparts for a world model (17, 18) and goals (19, 20). Critically, 
human users’ active interactions or inputs to the system only influ-
ence how explanations of robots’ decisions are generated but rarely 
influence the model’s decision-making process. This amounts to a 
unidirectional alignment of the mental model as static machine– 
dynamic human communication, where only the human user’s 
comprehension of the robot or the task evolves given explanations 
about a fixed decision model in machines. In a nutshell, existing 
XAI systems primarily approach the human-robot communication 
problem from one of the two communication directions, but sel-
dom from both. To accomplish bidirectional human-robot mental 
alignment, a more human-centric, dynamic machine–dynamic human 
communication is required. In such a paradigm, a robot, in addition 
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to revealing its decision-making process, would adopt the user’s 
values and change its behavior in real time so that the robot and the 
human user would cooperatively achieve a set of common goals. To 
grasp the user’s messages instantaneously, conventional data-driven 
machine learning approaches are replaced by communicative learn-
ing within a cooperative team. Explanations from the robot will be 
contextually adapted according to the human’s current goals. Such 
a cooperation-oriented human-machine teaming would require the 
machine to have a certain level of Theory-of-Mind (ToM): A ma-
chine would actively infer the user’s beliefs, desires, and goals 
(21, 22). The system’s design will not be limited to explaining its 
decision-making process but will also aim to understand human 
needs for cooperation, therefore forming a human-centric and 
human-compatible process (23). This mental alignment process, 
which can be viewed as one core computation for forming commu-
nal and personal common ground (24) that guarantees the coherence 
of human conversations, facilitates the success of human-machine 
collaboration.

Motivated to build an XAI system with the aforementioned ca-
pabilities of understanding the human user’s beliefs, desires, and 
goals while being interpretable to the user, we introduce a sequen-
tial decision-making task that requires human-machine teaming 
to deal with complex constraints over problems intractable to the 
human’s inferential capabilities. Specifically, we devise a human- 
machine teaming system instantiated as a collaborative game, in 
which the human user needs to work together with a group of robot 
scouts to accomplish some tasks and optimize the group gain. In 
this game, the user and robots communicate on a constrained chan-
nel. Only the robots directly interact with the physical world. The 
user does not directly access the physical world or directly control 
robot behavior. Only the user has access to the ground-truth value 
that encodes human’s desirable end states, which determine how 
the task should be completed (for example, minimizing time and 
maximizing areas to explore), and the robots have to infer this value 
function through human-machine interactions. Such a setting con-
stitutes a miniature task that realistically mimics real-world human- 
machine teaming. Many systems perform autonomously and interact 
directly with the hazardous environments under human users’ su-
pervision, but it is challenging (25) for desirable end states to be 
explicitly coded in autonomous agents beforehand or to change dy-
namically as events unfold. This setting also follows the classic mul-
tiagent system collaboration framework, where agents in the system 
can work in parallel but may rely on their partners’ communication 
and feedback (26). To complete a game successfully, robots are ex-
pected to accomplish bidirectional alignment by both “listening” and 
“speaking” wisely. First, robots need to extract useful information 
from human feedback to infer the user’s values and adjust their pol-
icies accordingly. Second, robots are required to effectively explain 
what they have done and plan to do based on their current value 
inference so that the user knows whether the team shares the human 
values. Figure 1 illustrates the bidirectional value alignment process 
in the game. Together, the proposed XAI system aims to address the 
following two questions. How can robots accurately estimate users’ 
intentions during real-time interaction and feedback? How can ro-
bots explain themselves so that the user can understand their be-
havior and provide helpful feedback to aid their value alignment?

To learn human values and intentions, robots make proposals 
for task plans and ask for the user’s feedback (acceptance or rejec-
tion of a proposal), from which the task goals can be inferred. In the 

collaborative game, knowing that robots are actively learning hu-
man values, the user tends to provide helpful pedagogical feedback 
to facilitate alignment (27). In particular, every message conveys two 
aspects of meanings, including literal meaning based on consistency 
between this message and the value and pragmatic meaning (28–30) 
based on deficiency of alternative feedback. Aware of the user’s 
helpfulness, the robots adopt a human-centric amelioration of iter-
ative teacher-aware learning (ITAL) (31) to learn the human value. 
ITAL performs maximum likelihood estimation (MLE) based on a 
two-part likelihood function: The first part models the probability 
of given feedback being aligned with the human value (literal mean-
ing), and the second part captures the probability of receiving that 
feedback instead of other alternatives (pragmatic meaning). Lever-
aging both aspects of meanings, the proposed XAI system demon-
strates value alignment in an in situ, few-round, instantaneous 
manner, enabling interactive human-machine communication in a 
cooperative teaming task with a large problem space. To synchro-
nize the robots’ mental status with the human user, our XAI system 
generates explanations that reveal robots’ current estimation of hu-
man values and justify the proposed plan. In each step of interac-
tion, to avoid overwhelming the user’s cognitive workload with 
verbose explanations, the robots present customized explanations, 
such as omitting repetitive signals and emphasizing important up-
dates. The robots model human users’ mental dynamics as a Markov 
process and track the most relevant aspects of the robots’ decision 
process using a sequential statistical graphical model. The explanation 
that includes all the relevant aspects and best addresses the user’s 
concern at that step will be presented. After receiving explanations 
from robots and sending feedback to them, the user provides cues 
to the robots about how satisfying they found the latest proposals 
and explanations. Using this feedback, the robots constantly update 
the formats, attention, and contents of the explanations.

To evaluate the performance of our XAI system, we conducted 
human experiments to examine the success of bidirectional human- 
robot value alignment. We adopted three types of explanations and 
randomly assigned participants into one of the three groups. Three 
dependent measurements were used to assess the mental accor-
dance, including the consistency between robot’s inferred value and 
human’s true value, human perception of how well robots infer and 
align with human’s value, and human’s cognitive trust (32) of the 
system. Our results show that the proposed XAI system can achieve 
bidirectional value alignment in an in situ, real-time manner for col-
laborative tasks; the robots can infer the human user’s values and 
make their value estimation comprehensible to the user. We also 
found that some forms of explanations that benefit the way humans 
interact with the robots may not necessarily improve the human 
perception of how well robots infer users’ values. These results pro-
vide converging evidence supporting the necessity for diverse expla-
nations that promote both the performance quality of robots and 
their social intelligence (33). Because the goal of an AI collaborator 
is to reduce the human’s cognitive burden and assist task comple-
tion, we believe that proactively inferring human values in real time 
and fostering human comprehension of the system pave the way for 
generic human-machine teaming.

RESULTS
Figure 1 illustrates the bidirectional value alignment procedure be-
tween the human user and robots during the game. The system’s 
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learning algorithm, built on top of ITAL (31), substitutes the con-
ventional likelihood functions for regression or classification tasks 
by explicitly integrating the Boltzmann rationality human-decision 
model. The system incorporates both the literal and the pragmatic 
meaning of human feedback to infer the user’s value. Meanwhile, 
the system explains its decision-making process to facilitate human 
perception of the machine. To test the system, we designed a psy-
chological experiment to assess the performance of human-robot 
value alignment using different forms of explanations. In the com-
ing sections, we first describe the human-robot collaboration game 
design, followed by an overview of the algorithms we used for bidi-
rectional value alignment and explanation generation. Next, we in-
troduce the human experiment design, report the empirical results 
of value alignments between humans and machines, and compare 
the effects of various types of explanations on value alignment.

Game design
Our collaborative game, the Scout Exploration Game, involves one 
human commander and three robot scouts. The game’s objective is 
to find a safe path on an unknown map from the base (located in the 
bottom right corner of the map) to the destination (located in the 
upper left corner of the map). The map is represented as a partially 
observed 20 tile–by–20 tile board, with each tile potentially holding 
one of the various devices and remaining unobserved until a robot 
scout moves close enough to observe (reveal) the tile’s contents. 
Every scout has the same probabilistic observation model, specified 
later in the “Observation model” section.

There is structural interdependence between human and scouts 
in the game (34). On the one hand, the user depends on the scouts 
to explore the dangerous area and defuse bombs. On the other 

hand, the scouts need the user to provide feedback to better under-
stand the goal of the current mission. We define a set of goals for the 
robot scouts to pursue as they find the path to reach the destination, 
including saving time used to reach the destination, investigating 
suspicious circuits/bombs (loops of devices connected with wires) 
on the map, exploring tiles, and collecting resources (gold bricks on 
the map). The game’s performance is measured by the accomplish-
ment of these goals by the robot scouts and their relative importance 
(weights), defined as the human user’s value function. Although all 
goals have intrinsic benefits, a trade-off among the goals has to be 
made according to the value function. For instance, if time is valued 
more in the value function than resources, the scouts should ignore 
some resources along the way to the destination for the sake of time. 
To emphasize the trade-off essence of value functions, we represent 
the importance of each factor with a percentage and the four per-
centages sum to 1. Before the interaction begins, a value function is 
assigned only to the human user as the mission for the game. Just 
like in the real world, various tasks can be specified with distinctive 
functions defined on a unified set of features (35). We coined seven 
value functions in this study to cover diverse types of tasks: Four of 
them have one dominant goal, two of them have two equally im-
portant goals, and the rest values everything but resources.

We mimic a realistic scenario, where human needs can be too 
diverse to code in the robot beforehand and value functions can be 
difficult to transfer between human and machine due to different 
mental representations. Without knowing the value function, to 
complete a task, the robot scouts (as a team) must quickly infer the 
commander’s value. In each step, we let the robot team make three 
movement proposals, one for each scout, to the user, and the user 
can either accept or reject a proposal. To help the commander make 
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Fig. 1. Overview of bidirectional human-robot value alignment. Pie charts represent the values, which are the importance of different goals in a collaboration task, 
such as simultaneously considering safety, gaining money, saving time, and reserving resources. t in the superscript represents the time step. U and M in the subscript 
stand for “user” and “machine,” respectively. VU is the user’s true value, VUinM is the robot’s estimation of the user’s value, and VMinU is the user’s estimation of the robot’s 
current value.  denotes the distance between values in the task value space. In every round of interaction, the machine first receives signals from the physical environ-
ment and processes its observations to form an abstract state of the environment. Next, the machine presents the processed map together with movement proposals 
and explanations to human users, who will provide feedback to the system accepting/rejecting the proposals according to human values and current map state. Given 
the user’s feedback, the machine then updates its estimation of human values and takes actions with respect to the new values. Cooperative human-robot communica-
tion with appropriate explanation aligns the team values in two directions by diminishing the distance between VUinM and VU, as well as VMinU and VUinM, resulting in final 
convergence to the true value VU.
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decisions, the robot team also explains the reason for every propos-
al. With the user’s feedback, conditioned on the interaction history 
as well as the current map status, the robot team adjusts its estima-
tion of the human value and takes actions accordingly. Specifically, 
if a plan is accepted, the proposer will follow that plan as much as 
possible (a plan may be interrupted by unexpected blocks in the 
partially observable map); otherwise, the robot will execute a new 
plan with the updated value estimation. We only allow the robot 
team to make proposals once in every round so that they must rely 
on their own autonomy to complete the task, instead of proposing 
until acceptance and effectively being teleoperated by the user. This 
concludes one round of interaction, and this process will be repeat-
ed. To avoid inefficient communication, the robot only makes pro-
posals when necessary and acts according to the basis of the latest 
human value estimation. Figure 2 summarizes the human-machine 
interaction flow.

This game is complex through the lens of the combinatorial 
game theory. With an average planning step of 35 and a branching 
factor of 212, the estimated game tree complexity is 10126 for scouts 
to generate task plans. In comparison, chess has a game tree com-
plexity of 10123. On the player side, with an average round of feed-
back of 18 and a branching factor of 8, the estimated game tree 
complexity is 1016 for the player to provide feedback.

Bidirectional value alignment
Bidirectional value alignment, as one of the primary contributions, 
provides a more human-centric, dynamic machine–dynamic human 
communication framework for human-robot teaming. To estimate 
the human user’s value during the communication process, we inte-
grate two levels of ToM into our computation model. The level-1 
ToM encodes the cooperative assumption. Namely, given a cooper-
ative human user, the accepted proposals are more likely to align 
with the correct value function than the rejected ones. The level-2 
ToM further accommodates users’ pedagogy into the model. That 
is, the feedback that drives robots’ value closer to the true value is 
more likely to be selected than other alternative feedback combina-
tions. The pedagogical inclination requires an additional level of 
ToM because it demands recursive modeling of the user’s model of 

the robots. Combining both levels of ToM, we formulate human 
behavior with distributions parameterized by the value and develop 
a learning algorithm with a closed-form parameter update function; 
see details in the “Human-robot value alignment” section.

To facilitate such a bidirectional alignment and gain human 
trust, we provide different forms of explanations along with propos-
als, which unveils the rationales behind scouts’ proposals. Specifi-
cally, the explainer takes in current estimations of two levels of ToM 
as semantic input and fills it in a syntactic template. To provide con-
cise explanations that are interpretable to humans and facilitate 
learning from humans, we devise a sequential generation process 
that selects templates by taking human’s preference (reflected by 
the satisfaction score) over previously observed explanations into 
consideration. We call such preferences human’s explanation utility; 
see details in the “Utility-aware explanation generation” section.

Human experiment
Experimental design
The human study examines whether our XAI system achieves real- 
time bidirectional value alignment between the human and the ma-
chine. In particular, we evaluate the efficacy of different forms of 
explanation of the robots’ plans to human users. We conducted a 
psychological study with 135 participants. Participants were ran-
domly assigned to one of three groups, including a proposal-only 
group, a brief-explanation group, and a full-explanation group. 
Each group has 45 participants. In the proposal-only group, the 
scouts only make proposals and give no explanations to the human. 
In the brief-explanation group, every proposal consists of one brief 
sentence explaining its positive outcomes. In the full-explanation 
group, a more detailed explanation accompanies every proposal, 
expounding the gains and costs of scouts’ tentative actions and the dy-
namics of their values for the importance of different goals. Across 
all three groups, the robot scouts follow the same action policy and 
decision process for belief updating. The three groups differ only in terms 
of the forms of explanations provided to the human participants. 
Figure 3 compares the game interface that appeared in each group.

Our experimental setup consists of three phases: introduction, 
familiarization, and game playing. The first two phases prepare par-

ticipants for the game. During the game, 
participants were asked to accept or reject 
scouts’ proposals and assess satisfaction 
with the scouts’ communication after 
every feedback. The feedback for pro-
posals was given using buttons shown 
in Fig. 3B. The satisfaction assessments 
were provided via Likert-scale questions 
shown in Fig. 5A. In addition, we also 
asked participants to estimate the ma-
chine’s internal states, such as the scouts’ 
current value function and their quali-
tative trust of the XAI system.
Human study analysis
Figure  4 illustrates the bidirectional 
human-robot value alignment results 
for all three groups. We compute the 
Kendall rank correlation coefficient, com-
monly referred to as Kendall’s  coef-
ficient, to assess the value alignment 
between scouts and humans. Perfectly 

Update robot 
value estimation 

A

B

C

Fig. 2. Study design of the Scout Exploration Game. Timeline (A) denotes events happening in a single round of 
the game, starting from scouts receiving environment signals and ending with their next move. Proposals and expla-
nations are presented differently to users depending on their experimental group (Fig. 3). The value estimation asks 
users to infer scouts’ value at the current time. Answers to these questions are not used by the scouts during the 
game, but only for inspecting users’ mental model after the game is complete. Figure 5D shows the detailed UI of 
these questions. Timelines (B) and (C) depict mental dynamics of the robots and the user, respectively.
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agreed/disagreed rankings have  = ±1, and independent rankings 
expect  ≈ 0. To demonstrate dynamic changes in bidirectional val-
ue alignment between scouts and humans, we recorded the scouts’ 
estimation of the user’s value and measured the user’s estimation of 
the scout’s value as the game proceeds.

Figure 4A shows the alignment between robots’ estimated values 
and the true values known to human users. First, all groups show 
higher value alignment at the end of the game compared with the 
beginning of the game [paired t test, tProp(44) = 2.850, PProp = 0.007, 
tBrief(44) = 10.148, PBrief < 0.001, tFull(44) = 11.452, PFull < 0.001]. 
Scouts that interacted with the brief-explanation and full-explanation 
groups show stronger value alignment, revealed by higher cor-
relations between scouts’ estimated values and true values, than 

alignment in the proposal-only group ( = 0.2, 0.4, and 0.5 for the 
proposal-only, brief-explanation, and full-explanation groups, re-
spectively). The group differences emerge in early stages of the 
game (25% of the game progress) and are maintained to the end of 
the game, confirmed by analysis of variance (ANOVA) at a range 
of progress points [from game progress 25, 50, 75, and 100%, 
F(2,132) = 19.086, 14.202, 11.961, and 11.622; P < 0.001, P < 0.001, 
P < 0.001, and P < 0.001]. Better value alignment in the two groups 
involving explanation than the baseline proposal-only group with-
out explanation provides strong evidence that explanations about 
robot decision processes to human users enhance bidirectional 
communications between humans and machines. The enhanced 
communication, in turn, helps machines gain accurate estimates of 

Fig. 3. UI for the Scout Exploration Game. (A) From left to right: The Legend panel explains the meaning of all icons used in the game; the Value Function panel shows 
the true values indicating the relative importance of various goals, which is unknown to the scouts; and the map panel shows the current status of the map in the game, 
including the grid map, the current scores for achieving individual goals, and the current status of the robot system. (B) The Proposals panel shows the robot scouts’ 
current proposals; human users can accept or reject proposals of individual scouts. In the proposal-only group, participants only see a descriptive sentence for each pro-
posal (B.i), whereas, in the brief-explanation and full-explanation groups, participants are presented with a brief explanation about the proposal’s purpose (B.ii). (C) The 
Explanations panel shows detailed explanations provided by the scouts, only displayed to the full-explanation group. (D) The table summarizes key components of the 
game display included in each group.
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human values, thereby fostering human-machine teaming. There is 
no difference between the brief-explanation group and full-explanation 
group, implying that the detail of the explanations may not critically 
influence humans’ feedback in terms of accepting or rejecting robots’ 
proposals, as long as these explanations provide sufficient contexts 
to justify the robots’ intents. Figure 4B depicts how well the human 
users estimate the scouts’ values over the progress of the game. It 
represents the accuracy with which humans assess the scouts’ values. 
Figure 5D shows the interface we used to collect human estimates in 
the experiment. An ANOVA test revealed a significant main effect of 
groups in the later stage of the game playing at game progress 50, 75, and 
100% [F(2,132) = 7.632, F(2,132) = 8.339, and F(2,128) = 10.542; P = 0.001, 
P < 0.001, and P < 0.001, respectively]. The brief-explanation 
and full-explanation groups show significant enhancement of 

alignment between human estimates of scouts’ values and scouts’ 
values used in determining their decision and proposals at the end 
of the game compared with the beginning of the game [paired t test, 
tBrief(44)  =  3.272, PBrief  =  0.002, tFull(39)  =  2.810, PFull  =  0.007], 
whereas the proposal-only group does not show any improvement 
[paired t test, tProp(38) = 0.286, PProp = 0.776]. These results suggest 
that human users have difficulty understanding robots’ intentions 
by only observing their situational behaviors, highlighting the cen-
tral role of explanation in revealing the robots’ intentions to its 
human user. Critically, humans show stronger alignment in esti-
mating scout’s values in the full-explanation group than in the other 
two groups in the second half of the game [independent sample 
t test, from game progress 50, 75, and 100%, t(88) = 4.291, t(88) = 
4.511, and t(84) = 5.088, P < 0.001, P < 0.001, and P < 0.001 against 

A

B

Fig. 4. Box plots showing results of value estimation for scouts and humans in three groups. The legends: Proposal, Brief, and Full refer to the proposal-only group, 
the brief-explanation group, and the full-explanation group, respectively. Horizontal axis indicates the progress of the game for human participants; vertical axis indicates 
Kendall’s rank correlation coefficient between estimated values by scouts and humans; higher correlation indicates better value alignment. (A) Correlation between scouts’ 
value estimate and the true values that are known to human users as a function of game progress. It represents the scout’s accuracy in estimating human values. Before 
the game starts, the scouts’ value estimate is initialized as uniform across all goals. (B) Correlation between the human estimate of the scouts’ values and scouts’ estimate 
of the true values as a function of game progress. It represents humans’ accuracy in estimating scouts’ values. * indicates significant group differences in paired t test with 
P value smaller than 5% and ** indicates that P value is smaller than 1%. The solid lines and red dashed lines in the bars respectively indicate the median and mean.
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proposal-only; t(88)  =  2.387, t(88)  =  2.219, and t(86)  =  2.196, 
P = 0.019, 0.030, and 0.031 against brief-explanation]. In comparison, 
the brief-explanation group only yields a more consistent human 
estimate of scouts’ values than the proposal-only group at the end of 
the game [independent sample t test, t(86) = 2.274, P = 0.026]. 
Together, these results indicate that both forms of explanation 
facilitate human estimates of robots’ value estimates based on 
observation of robots’ behavior and interactions with the robots. 
However, the full explanation, which provides details about both 
the advantages and the disadvantages of a proposal, is more helpful 
to human judgments about the robots’ estimates than a brief expla-
nation showing only the major benefit of a proposal.

Both results from robots’ estimate of human values (Fig. 4A) and 
from human estimate of robots’ values (Fig. 4B) show that groups 
with brief and full explanations can maintain a stable trend of value 
alignments across the entire human-robot teaming process. How-
ever, the emergence of value alignment differs across different groups 
and varies for different alignment metrics over the course of the 
game. Robots’ value alignment metrics measured by the Kendall’s  

coefficient converges at 25% of the game. Alignment of human esti-
mates and scouts’ values converges at 50% progress for the full- 
explanation group and at 75% game progress for the brief- explanation 
group. These results demonstrate our system’s capability to maintain 
the established team mental model during continuous human- robot 
teaming, with full explanations enabling faster convergence of 
users’ estimates of robots’ mental status (estimates of values). The 
convergence of both alignment metrics shows that our value align-
ment algorithm enables the robot scouts to learn human values in 
an in situ, real-time, and interactive manner. It also shows that ex-
planations generated by the robots enable users to better perceive 
the machine’s values. These results demonstrate a bidirectional 
human-robot alignment. Moreover, our result pins down the con-
tributions of explanation formats in different facets of human-robot 
communication. We found that brief and full explanations lead to 
similar effects in improving the way humans provide feedback to 
the machine via acceptance or rejection of robots’ proposals. How-
ever, the full-explanation group shows a significantly greater benefit 
for human accuracy in estimating robots’ values.

A  Explanation/proposal satisfaction question B  Attention check question

C  Qualitative trust question D  Value estimation question

Fig. 5. Examples of questions participants received during the game. (A) Explanation/proposal satisfaction question. Participants are asked to provide a satisfaction 
score for the explainer in every round when they receive scout’s proposals and explanations. This satisfaction score is used to update models for generating future expla-
nations. (B) Attention check question. These questions are shown after trust questions; participants receive one of the four questions about the game logic and UI. Partic-
ipants who failed the attention check are later removed from data analysis. (C) Qualitative trust question. We ask the participants “how confident you are in the scouts?” 
and “how much do you think the scout’s actions will have a harmful outcome?” (D) Value estimation question. Participants predict the robot scouts’ belief about the true 
human value by sliding the bars to set a relative importance of each goal; this is a question about level-2 ToM. Our interface ensures that the total value of all goals sums 
to 100%; if the participant moves one slider, the others will automatically change proportionally with respect to their original values such that all values still sum to 100%. 
Meanwhile, participants can lock a particular slider by checking the lock symbol to the right of the slider.
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DISCUSSION
Our proposed XAI system successfully demonstrates the feasibility 
of a bidirectional human-robot value alignment framework. From 
the listener’s perspective, robots in all three explanation groups can 
quickly align to the user’s value by correctly ranking at least 60% of 
goals’ importance as early as the 25% progress of the game. From the 
speaker’s perspective, by providing proper explanations, robots can 
reveal their intentions to the user and facilitate better human per-
ception of the machine’s values, with convergence occurring at 50% 
(full-explanation) and 75% (brief-explanation) of the game. Togeth-
er, both perspectives provide convincing evidence of a bidirectional 
process of value alignment. On the one hand, by receiving coopera-
tive human feedback, robots gradually update their value function to 
align with the human values. On the other hand, by continuously 
interacting with the robots, the human user gradually forms a coher-
ent perception of the system’s capability and intentions. Although 
the system’s values have not converged in the first half of the game, 
the user’s perception of the robots’ estimate can still improve. Even-
tually, when the robots’ values become stable, the user’s estimation 
of the robots also becomes stable. The pairing of convergence from 
robots’ estimate of the user’s values to user’s true values and from 
user’s estimate of the robots’ values to robots’ current values forms a 
bidirectional value alignment anchored by the user’s true value.

Despite showing similar converging trends of value alignments, 
the three explanation groups differ in the precision of their align-
ments. In both directions of human-robot estimation, including 
scouts estimating human values and the human’s understanding of 
the scouts’ current value estimation, the Kendall’s  coefficients of 
the proposal-only group are significantly lower than the coefficients 
of the other two groups. These gaps suggest that human-machine 
interactions alone are not sufficient to enhance the human percep-
tion of the machine, nor are they sufficient to evoke better human 
feedback/guidance to the robots. Results from the computational 
ecology models show that a multiagent system can converge to an 
equilibrium point only when the information delay and uncertainty 
between agents are fairly small. On the contrary, our modeling 
framework can handle relatively large amount of uncertainty. In our 
case, the scouts’ explanations play an important role in reducing in-
formation uncertainty and system convergence: Explanations help 
the human understand the machine’s current value estimation and 
generate a better response, which in turn enables the machine to es-
timate the value more accurately. The extent of human-robot mutu-
al understanding depends upon how an AI system explains itself to 
the user. In the absence of informative explanations, certain miscon-
ceptions cannot be eliminated even with continuous interaction be-
tween humans and robots, leading to a slower value alignment.

Compared with the brief-explanation group, the full-explanation 
group demonstrates significant enhancement in the human estimate 
of robots’ values but does not show a strong advantage in terms of 
scouts’ value alignment. These results indicate that human users in 
the two explanation groups provide feedback to the scouts in similar 
ways, although the full-explanation group acquires a more accurate 
understanding of the system. One possible cause of this dissociation 
is that human users exhaust their cognitive resources when process-
ing other complexities of the game, such as comprehending messages 
from the three scouts or analyzing information on the map. Thus, 
additional details in the full explanation cannot be accommodated to 
offer more rationale feedback. An alternative possible reason in-
volves the design of the game, in particular, the granularity of the 

feedback. Because there are only eight possible feedback combina-
tions (two for each scout’s proposal) in every round, it is possible to 
identify the best response to the scouts with only a limited under-
standing of the system status and the proposals. The extra informa-
tion provided in the full explanation, although beneficial to the user’s 
perception of the machine, maybe useless for scouts’ value learning.

We also measured users’ qualitative trust in the system as the 
game proceeds. However, we did not find any significant differenc-
es across the three explanation groups. This result suggests that hu-
man trust toward machines depends on many facets of the machines 
(33, 36). Both social intelligence and performance quality of robots 
are indispensable to fostering trust (33). Better bidirectional value 
alignment can improve team performance but may not be sufficient 
to enhance the human perception of scouts’ social intelligence 
through short-term human-robot collaborations. In addition, in the 
current game, scouts are not likely to make catastrophic mistakes 
throughout the task and are guaranteed to reach the upper left cor-
ner of the map successfully. Because the robots can always accom-
plish the task in the end, users may tend to trust the robots so that 
explanations have less effect on trust formation.

To summarize, we present a bidirectional human-robot value 
alignment framework and use an XAI system to verify its feasibility. 
The proposed XAI system demonstrates that, with ToM integrated 
into the machine’s learning module and appropriate explanations 
provided to the user, humans and robots are able to achieve align-
ment of mental models through an in situ, real-time, and interactive 
manner. The coherent computational framework reported in our 
study provides promising results to address the question “what con-
stitutes a good human-robot team,” by contributing to the formation 
of a shared mental model between a human and a machine. Particu-
larly, our work focuses on the task-specific aspects of the mental 
model, namely, the value and intentions. In more intricate scenarios, 
mental alignments can further entail other aspects going beyond the 
context of a single task—for example, capabilities of every team 
member, prerequisites and outcomes of actions [also referred to as 
the world transition model in reinforcement learning (RL)], or indi-
vidual duties and roles. These components in the mental model are 
useful across various task contexts. In human language, using such a 
mental alignment process is often referred to as personal common 
ground and can be established via episodic evidence (24), which is 
the actions or events the speakers are part of together. In our setting, 
the episodic evidence could be acquired from human-robot collabo-
ration in multiple games, possibly with different value functions and 
maps. As such, the universal human model described in Eqs. 2 and 6 
can be replaced by a customized model parameterized for individual 
person’s characteristics.

In this work, we focus on the alignment of value functions, which 
captures the relative importance of a wide range of goals. Aligning 
the values can greatly help the human and machine establish com-
mon ground for task-oriented collaborations. The mental models of 
human-robot teaming in this work are primitive compared with the 
ones that emerged in human-human collaborations, wherein com-
mon ground formed and maintained from rich shared experience 
(37, 38). Specifically, we assume limited communication bandwidth, 
a realistic setting that occurred in real-world applications. We con-
sider our work as a first step toward a more general mental model 
alignment setting in human-machine collaboration. In future work, 
we plan to explore factors that can further enhance human users’ 
trust (for example, enabling counterfactual queries to the robots), 
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validate the effects of alignment on task performance, and apply our 
system to tasks involving diverse communication modalities, more 
complicated environments, and richer mental states.

MATERIALS AND METHODS
Game setup
We implemented this game using HaxeFlixel, a two-dimensional 
game engine for JavaScript-based games, such that participants can 
access the game on web browsers; this setup was necessary in the sit-
uation of coronavirus disease 2019 (COVID-19). Our between- 
participant design is divided by the explanation format provided to 
the participants: the proposal-only group, the brief- explanation group, 
and the full-explanation group. The proposal- only group only shows 
the proposed trajectory on the map and a basic descriptive text about 
the proposal, such as “Scout 1 proposes to move along the blue trajec-
tory.” For the brief-explanation and full-explanation groups, brief 
explanations accompany the proposals to clarify the motivation of 
the robot scouts; for example, “Scout 1 proposes to move along the 
blue trajectory, which is in the top 1% of sampled trajectories when 
saving time.” The full explanation includes a more detailed full ex-
planation besides the brief one in the proposal panel; for example, 
“Scout 1 wants to save more time at the cost of map exploration and 
resource collection.” More details about explanations can be found 
in the “Utility-aware explanation generation” section. The full user 
interface (UI) of the game is displayed in Fig. 3 with the actual expla-
nations used in the game.

After giving feedback to the scouts’ proposals, participants were 
asked a few questions before the next round of explanation and pro-
posing. These questions were, by the order of showing up, satisfac-
tion about the latest proposal and explanation, value estimation, 
qualitative trust, and attention check. Only answers to the satisfac-
tion questions were used by the system’s explainer for explanation 
utility tracking; all other questions were used only for post-game 
analysis. Figure 5 includes some example questions queried during 
the game. To avoid overwhelming users, value estimation questions 
were asked every two proposals, and qualitative trust and attention 
check questions were asked every five proposals.

Computational model details
Before diving into the technical details of how the proposed robot 
scouts act, align value, and interact with the human user in a 

bidirectional communicative learning 
framework, we first provide an overview 
of the game flow and the notations of the 
computational model. We use R and H 
to denote the robot scouts and the hu-
man user, respectively.  encodes the 
parameters of the value function, s is the 
physical state, υ is the utility of explana-
tions, and b(∙) is the belief over latent 
variables. xR = (b(s), b(), b(υ)), the men-
tal state (3, 5) of the robots (the robot 
team shares one mental state), depicts 
their current beliefs of all the unknown 
task-relevant variables. m is the message 
used for human-machine communication. 
In every round of the game, the robot 
scouts receive observations from the en-

vironment and make a task plan based on their current mental state. 
Next, they send messages (proposals and/or explanations) to the 
human user for feedback; this user feedback is used for robots’ final 
movement plans in this round. Algorithm S1 sketches the high-level 
game flow, and Fig. 6 shows the computation pipeline for one round 
of human-machine teaming.

One comparable but different setting with our human-machine 
teaming framework is IRL (39). Nevertheless, IRL aims to recover an 
underlying reward function given prerecorded expert demonstrations 
in an offline passive learning setting. In contrast, the robot scouts in our 
setting are designed to learn interactively from scarce supervisions given 
by the human user. Crucially, our design requires the robots to actively 
infer the human user’s value in real time and in situ as the task proceeds. 
Furthermore, to consummate a collaboration, the robot scouts not only 
must quickly comprehend the human user’s intent but also elucidate 
themselves to ensure smooth communication with the human user 
throughout the entire game. In brief, the robots are tasked to perform 
value alignment by inferring the human user’s mental model, actively 
making proposals, and evaluating the human user’s feedback, which re-
quires complex and recursive mind modeling of the human user.

In the coming sections, we will introduce how the robots select 
actions, make proposals, update belief of human user’s value func-
tion, and generate communication messages. In the “Observation 
model and belief of states” section of Supplementary Methods, 
we describe how the robots process observations and update their 
belief of the states.

Action selection
Suppose the robot scouts already know about the human user’s value 
function. The game simplifies to a partially observable Markov de-
cision process (POMDP) setting, solvable by planning-based meth-
ods (40). Let i denote the plan proposed by the ith scout and  = {1, ..., K} 
as the complete plan of the scout group, where K is the number of 
scouts in the group. When constructing a plan, the scouts use the 
following policy:

   argmax  
∈T

     E  s~b(s),~b()   [     T  f(, s)]  

=  argmax  
∈T

     E  s~b(s)    [f(, s)]   T   E  ~b()   [ ] 

≈  argmax  
∈T

      
_

     T  (     1 ─  N  S       ∑ 
n=1

  
 N  S  

   f(,  s  n  ) )   =  arg max  
∈T

    ‾     T  
―
(f())    (1)

mH
t

mR
t

ot

Fig. 6. Algorithmic flow of the computational model. Given game observations and human feedback to previous 
proposals, the robots update their mental state and make new task plans. On the basis of the plans and current be-
liefs, new proposals and explanations are generated and sent to the human for feedback in the next round.
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where f (, s) is the status of the four goals in the terminal game state 
given that current state is s and the scouts follow the plan ; we call 
it the features of (, s). The first equality holds because s and  are 
independent of each other in our setting. Given the dynamics of the 
game, f can be forward simulated in our planner such that the ex-
pectation of f (, s) can be approximated using Monte Carlo meth-
ods with NS state samples, giving us    ‾ f()   , the feature of . Instead of 
computing the full distribution, the agent only needs to keep track 
of the mean of the belief over human user’s value function because 
we are using a linear model to calculate the gain of the game; we use 
  
_

    to denote the mean of b(). Because the space of all possible plans 
is too large [(20 × 20)K] to be calculated exactly, we use heuristics to 
approximate the space of all possible plans by constructing another 
space T and select the optimal plan from it; see the “Scouts plan 
space construction” section in Supplementary Methods for details 
about constructing T. After a plan  is determined, the joint action 
of all robot scouts is the first move of the generated plans aR = (1[0], 
…, K[0]).

Proposal selection
To improve user experience during the interaction and foster human 
trust, the robots ought to make good proposals at the proper time to 
collect users’ informative feedback. In active learning (41), the query 
usually maximizes the expected information gain. However, such cri-
teria of asking questions to an oracle cannot be applied to human- 
robot interaction (HRI). Critically, besides acquiring information from 
the human, robots’ questions also ought to reveal their mental status 
to the user and gain their trust. A clear dilemma always exists: The 
proposal with the most expected information gain is usually the most 
uncertain one as well, querying of which easily leaves an unreliable 
impression of the system to the user and impairs the human percep-
tion of the machine’s value. To tackle this issue, we designed our com-
municative learning framework such that the scouts will propose the 
optimal plan given their current estimation of the user’s value. Such 
proposals can reveal the robot team’s current mental status to the user 
for better human perception of the scouts, hence receiving more help-
ful supervision. For instance, if all three proposals ignore suspicious 
devices, but bomb exploration is an important factor, the user will be 
aware of the discrepancy between the scout’s value and the intended 
value and adjust it with feedback. As a result, plans used for proposals 
are calculated in the same way as plans for action selection described 
in the last paragraph, only with b() from the previous time step.

Human-robot value alignment
Level-1 ToM
The robot scouts need to estimate the human user’s value from their 
interactions. In the collaborative game, the more a proposal facili-
tates goals with high values, the more it is likely to be accepted. 
Here, we refer to the ability to infer humans’ value from their ac-
tions as level-1 ToM. Bearing level-1 ToM, the scouts can interpret 
the user’s feedback and update the value estimation given the cur-
rent map status. For example, if a trajectory toward a partially ex-
plored circuit is accepted, the scouts are likely to increase the value to 
bomb investigation and lower the other goals. We integrated level-1 
ToM into our computation model and developed a learning algo-
rithm with a closed-form parameter update function.
Belief update with level-1 ToM
Let mH( fb) denote the human user’s feedback, which is a binary code, 
with the ith bit indicating the acceptance or rejection of the proposal 

from the ith scout. Assuming that the human user considers each 
proposal separately and follows a Bernoulli acceptance distribution 
(42), the likelihood function of the human user’s feedback is

 p( m   H ( fb) ∣;  
_

   ) =  ∏ 
i=1

  
K

   p( m   H   ( fb)  i  ∣   i  ;  
_

   ) =  

                  ∏ 
i=1

  
K

      
exp  (   1     

_
     T   ‾ f(   i  )  )   

 m   H  ( fb)  i    exp  (   1     
_

     T   ‾ f¬(   i  )  )   
(1− m   H  ( fb)  i  ) 

    ─────────────────────────   
exp(   1     

_
     T   ‾ f(   i  )  ) + exp(   1     

_
     T   ‾ f¬(   i  )  )

    (2)

where

    ‾ f(   i  )   =   ∑ 
∈T:   i  ∈

     ‾ f()  , and   ‾ f(¬    i  )   =   ∑ 
∈T:   i  ∉

     ‾ f()    (3)

That is, a proposal is more likely to be accepted if including it in 
the scouts’ plan is more beneficial than excluding it when   

_
    is the 

value parameter. Given this likelihood function, we use MLE to learn 
  
_

    by maximizing  log p( m   H ( fb) ∣;  
_

  )  with respect to   
_

   :

   
_

   =  
_

   +     
∂ log p( m   H ( fb) ∣;  

_
  )
  ──────────── 

∂ 
_

  
    (4)

where  is the learning rate and

    
∂ log p (    m   H  (   fb ) ∣ τ;  

_
 θ  )  
  ____________ ∂ 

_
 θ    =  β  1    ∑ 

i=1
  

K
    [    m   H    (   fb )    i    ‾ f  (    τ  i   )     +  (  1 −  m   H (fb)i )    ‾ f¬ (    τ  i   )     ]   

 
 −  E  m~p (   m   H  (  fb )  i∣τi; 

_
 θ  )     [  m ‾ f (    τ  i   )    +  (  1 − m )   ‾ f (  ¬ τ  i   )    ]      (5)

where acceptance/rejection selects the feature of including/excluding 
i and the expectation is taken with respect to the feedback distribu-
tion given current   

_
   . The expectation computes the average feature 

if the plan, , is randomly accepted/rejected according to current   
_

   . 
The difference between the user’s designated feature and the expected 
feature forms the gradient. Because   

_
    > 0 and   ‖ 

_
  ‖  1   = 1 , we perform 

MLE with the projected stochastic gradient ascent algorithm.
Level-2 ToM
Intuitive but limited, the comprehension of feedback endowed by 
level-1 ToM is constrained to its plain content (the literal meaning 
of the feedback). In human communication, messages often convey 
both literal and pragmatic meanings (43). In other words, one can 
acquire not only explicit information from what others said but also 
implicit information from what others did not say. A typical con-
cretization is the Gricean Maxims of quantity (28) or the scalar im-
plicature: When people say “I like drinking warm coffee,” although 
the lexical meaning of “warm” is semantically close to “hot,” they 
mean “not hot”; otherwise, people would have said “hot” directly 
(44, 45). Similarly, the human user’s selection of a certain combina-
tion of feedback but not other combinations can also help robot 
value alignment. To comprehend this process, it requires the robots 
to mentally simulate and plan based on human users’ pedagogical 
tendency and belief about the robots’ current plan. We refer to such 
a recursive inference ability as level-2 ToM.
Belief update with level-2 ToM
To enable level-2 ToM, robots need to conduct a recursive mental sim-
ulation in a counterfactual fashion and consider the advantage of the 
received feedback over others not being sent. Intuitively, suppose the 
user knows how the robots with level-1 ToM update the value given 
feedback; the more the feedback leads to changes toward the ground-
truth value, the more it is likely to be selected. Computationally, the 
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level-2 robots first simulate a level-1 value update given all possible 
feedback. Next, the robots find a ground-truth value such that the up-
date brought by the received feedback is better than the other alterna-
tive feedback. Mathematically, we formulate the human user providing 
feedback based on its anticipatory improvement following

 q( m   H ( fb) ∣ 
_

  , ;  * ) =  
 

         
exp (  −   2     ‖   

_
   +   ∂ log p( m   H ( fb) ∣;  

_
  )  ____________ ∂ –   −  *  ‖     

2
 )
    ─────────────────────────────    

 ∑ m  ̂       H  (  f  b )  ∈FB     exp 
(

  −   2     ‖   
_

   +   
∂ log p(m  ̂       H  (  f  b) ∣;  

_
  )
  ____________ ∂ –   −  *  ‖     

2

  
)

  

    (6)

where 2 ≥ 0 controls the extremeness of the Boltzmann rationality, 
 is the learning rate, and * is the set of ground-truth parameters 
of the value function possessed by the human user. The intuition of 
this equation is as follows: The feedback from the human user is sam-
pled from a soft-min distribution of the distance between the updated 
parameters given the feedback and the ground-truth parameters. 
The smaller the distance is, the larger the improvement brought by 
that feedback, and the larger the improvement is, the more likely 
the feedback is provided. Further analysis of the above distance can 
be found in the study of Liu et al. (46). Integrating this feedback 
function into our value learning algorithm, we can derive a new pa-
rameter update function:

  
_

   =  
_

   + g( m   H ( fb)) + 2    2       2 (g( m   H ( fb)) −  
                               E  m( fb)~q(m( fb)∣ 

_
  ,;*)   [g(m( fb))])  (7)

where

  g(m( fb)) =   
∂ log p(m( fb) ∣;  

_
  )
  ─────────── 

∂ 
_

  
    (8)

The first two terms in Eq. 7 are the same as the level-1 belief up-
date, whereas the third term grasps the message’s context by com-
paring the selected message against the also-runs and leverages the 
advantage to further update the belief. Notice that * is unknown to 
the agent, so q in the expectation does not have an exact solution. 
Thus, we use   

_
    + g(mH( fb)) as an approximation of *. That is, we 

calculate level-1 ToM update on the parameters of the value func-
tion and take an additional gradient ascent step for level-2 ToM 
update. In this work, we always initialize scouts’ value as uniform 
across all goals:    

_
     0   = [0.25, 0.25, 0.25, 0.25].

The difference between robots with level-1 ToM and level-2 ToM 
is the likelihood function they used to model the user. A level-1 ro-
bot assumes that the user provides feedback only by thinking about 
how good the proposals are, whereas a level-2 robot is also aware of 
the pedagogical perspective of the human user in the collaborative 
game and accommodating the information of both the literal and 
the pragmatic meaning of user feedback.

Theoretically, the recursive reasoning between robots and the 
human user can continue infinitely with unlimited resources or up 
to a fixed point of convergence (47). In this work, we only model the 
human user as knowing the value update mechanism of scouts with 
level-1 ToM, a manageable extent of reasoning for human cognitive 
capability (48), which is also adopted by recent literature (49).

The effectiveness of this computational model in the Scout Ex-
ploration Game has been verified by the empirical results in the pre-
vious section. For other settings, in which task performance has a 
linear relationship with the value, as depicted by Eq. 1, the same 
model can be applied with minor modifications. For settings involv-
ing nonlinear value functions, the inner product in Eq. 1 is to be 
replaced, as well as the gradient function in Eq. 5. Still, the core 
computations in the algorithm, namely, the MLE learning of the 
value function and the level-1/2 ToM integration, remain the same.

Utility-aware explanation generation
We generate explanations to aid the human user in collaborating 
with the robots by accepting/rejecting specific proposals. Given tra-
jectories produced by the planner, the explainer aims to generate 
human-like explanations that not only provide sufficient semantic 
information but also match the human user’s syntactic preferences, 
namely, the explanation utility. Specifically, an explanation is de-
fined by its semantic inputs and a set of syntactic rules. The former 
is produced by the planner, providing explanations regarding what. 
This includes the current observation, physical state, and belief over 
the value function. The latter is to provide explanations regarding 
how, which corresponds to user’s explanation utility.

To quantitatively estimate the utility values, after each round, we 
used a Likert-scale questionnaire on explanation/proposal satisfac-
tion (Fig. 5A). Answers to these questions reflect the participant’s 
belief regarding how helpful the explanations are for them to un-
derstand the game and provide correct guidance to the robot team 
toward plans that are better suited to the scenarios and their value 
functions.

Given the satisfactory score, we formulate the overall generation 
as a hidden Markov model–based sequential generation process ca-
pable of adopting the temporal dynamics of the human user’s expla-
nation utility. More precisely, at each step, we first predefine a set of 
templates, each of which is accompanied by a combination of attri-
butes, for example, isCounterfactual, hasTarget.; these templates 
provide the basis of an explanation and are filled in according to 
relevant slots. Next, the explainer determines the optimal syntax 
that matches the human’s syntactic utility based on the satisfactory 
score; see the “Sequential explanation generation” section in Sup-
plementary Methods for detailed computational flow.

One distinguished attribute to highlight is isRitualized, stemmed 
from the term “ontogenetic ritualization” in evolutionary anthropology 
literature. Conventionally, ritualization is referred to the evidence 
that early infants learn to communicate, especially in a symbolic manner, 
not based on imitation but rather on an individual learning process 
(50). Tomasello and Call (51) argue that such communicative behavior 
is a communicative signal that can be formed by two individuals 
shaping each other’s behavior in repeated instances of interaction 
over time. Similar phenomena have also been observed and investi-
gated in other primates, such as great apes (52). For example, many 
individual chimpanzees come to use a stylized “arm-raise” to indi-
cate that they are about to hit the other and thus initiate play (51). 
In this way, a behavior that was not at first a communicative signal 
would become one over time. Inspired by this nonverbal behavior, 
the process of ontogenetic ritualization can also be formed during 
human-robot teaming, specifically when understanding and react-
ing to explanations. Intuitively, human speakers are reluctant to 
repeat similar messages that they have already conveyed before and 
would rather deliver a more concise version. To achieve this goal, 
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we explicitly define the “ritualized form” of explanation templates 
(table S1).

Human experiment details and demographics
The protocol for human study was reviewed and approved by the 
University of California, Los Angeles (UCLA) North Institutional 
Review Board (IRB), ID no. 20-001767. Human participants were 
recruited from University of California, San Diego (UCSD) under-
graduate students taking psychology courses and the UCLA Depart-
ment of Psychology participant pool. All participants provided 
written informed consent and were compensated with course cred-
it for their participation. A total of 167 students completed the in-
troduction phase and passed the familiarization test (56, 53, and 
58 for the proposal-only, brief-explanation, and full-explanation 
groups, respectively). Nineteen participants were removed from the 
analysis for failing the attention check during the game play, resulting 
in 148 participants (49, 47, and 52 for the proposal-only, brief- 
explanation, and full-explanation groups, respectively) considered 
in the final results. In Fig. 4, we report results after the removal of 
outliers that are 1.5 interquartile range (IQR) below the 25th per-
centile or above the 75th percentile, resulting in 135 valid partici-
pants (45 participants per group). Before the game starts, all participants 
were assigned to one of the three explanation groups and given one 
of seven value functions randomly. The explanations for the 
brief-explanation and full-explanation groups were generated as 
described in the “Utility-aware explanation generation” section; see 
additional details of explanation generation and templates in Sup-
plementary Methods. Participants in the proposal-only group did 
not have access to any explanations.

The experiment included three phases: introduction, familiar-
ization, and game play. In the introduction phase, participants were 
presented with the context and rules of the Scout Exploration Game. 
Icons, scores, and UI in the game were explained to the participants 
with both text descriptions and video demonstrations. Because par-
ticipants in different explanation groups saw different UI in the 
game, we guaranteed that the UI in the video demonstrations is 
consistent with the one in the actual game; video demonstrations for 
other groups were not presented, which ensures the between- 
participant design. In the familiarization stage, participants were 
tested with multiple-choice questions about their understanding of 
the game flow, rules, and the UI. Participants who correctly an-
swered all questions proceeded to game play. Participants having at 
least one wrong answer were asked to review the introduction and 
retake the familiarization test. Participants who could not pass the 
familiarization test twice or took more than 20 min before starting 
the game play were removed from the study. During the game, we 
asked participants to provide feedback to the proposals and esti-
mate the machine’s internal states, such as the scouts’ current value 
function and their qualitative trust of the XAI system. The scouts’ 
value estimation questions were asked every two rounds of commu-
nication, and the trust questions were asked every five rounds. Fig-
ure 5 (C and D) shows the scouts’ value estimation question and the 
trust question, respectively. Note that human judgments about the 
value estimation and trust were not used to adjust scouts’ behavior; 
these additional measures were only used for evaluation purposes. 
Credits were awarded to participants regardless of their familiariza-
tion test results. The computational model used for scouts’ value 
alignment was the same across all groups to attribute the difference 
in the performance of bidirectional value alignment to the lack or 

distinction of explanations. Participants in the proposal-only, brief- 
explanation, and full-explanation groups communicated with the 
scouts for 15.4, 16.4, and 16.2 rounds on average, with the SD of 
3.2, 4.0, and 3.7 rounds, respectively. The average time of game play 
was 20.8, 22.5, and 32.3 min, with the SD of 4.5, 6.3, and 10.7 min 
for the proposal-only, brief-explanation, and full-explanation groups, 
respectively.

Statistics
To measure the value alignment performance, we use the Kendall  
coefficient to compare the goals’ importance ranking in the target 
value with the ranking in the value estimation. The null hypothesis 
is that explanations yield the same value alignment across different 
groups, and therefore, no difference in the ranking statistics would 
be observed. To compare two sets of values (for example, values 
estimated by scouts versus true values known to human users), we 
first rank the task goals by their corresponding values and then cal-
culate the Kendall’s  coefficient between the two rankings. Because 
games have various lengths due to different explanation formats, 
group values, and individual differences in participants, we normalize 
game progress as a percentage calculated by dividing the number of 
current iterations by the total number of iterations. For all three 
groups, we remove participants who fail attention checks and outli-
ers whose alignment results are 1.5 IQR below the 25th percentile or 
above the 75th percentile at any game progresses. For statistical test, 
we perform paired t test to compare the degree of value alignment 
from the beginning of the game with the end of the game. In addi-
tion, we perform one-way ANOVA and paired t test to examine the 
group-wise difference of value alignment at different stages of the 
game. The t test we use assumes two-tailed independent samples. 
For all the statistical tests, we use significance level  = 0.05 and re-
jection region P ≤ 0.05.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scirobotics.abm4183
Supplementary Methods
Figs. S1 to S3
Table S1
Movies S1 and S2
MDAR Reproducibility Checklist
References (53, 54)
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