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A B S T R A C T   

We examined the role of different types of similarity in both analogical reasoning and recognition 
memory. On recognition tasks, people more often falsely report having seen a recombined word 
pair (e.g., flower: garden) if it instantiates the same semantic relation (e.g., is a part of) as a studied 
word pair (e.g., house: town). This phenomenon, termed relational luring, has been interpreted as 
evidence that explicit relation representations—known to play a central role in analogical rea-
soning—also impact episodic memory. We replicate and extend previous studies, showing that 
relation-based false alarms in recognition memory occur after participants encode word pairs 
either by making relatedness judgments about individual words presented sequentially, or by 
evaluating analogies between pairs of word pairs. To test alternative explanations of relational 
luring, we implemented an established model of recognition memory, the Generalized Context 
Model (GCM). Within this basic framework, we compared representations of word pairs based on 
similarities derived either from explicit relations or from lexical semantics (i.e., individual word 
meanings). In two experiments on recognition memory, best-fitting values of GCM parameters 
enabled both similarity models (even the model based solely on lexical semantics) to predict 
relational luring with comparable accuracy. However, the model based on explicit relations 
proved more robust to parameter variations than that based on lexical similarity. We found this 
same pattern of modeling results when applying GCM to an independent set of data reported by 
Popov, Hristova, and Anders (2017). In accord with previous work, we also found that explicit 
relation representations are necessary for modeling analogical reasoning. Our findings support 
the possibility that explicit relations, which are central to analogical reasoning, also play an 
important role in episodic memory.  
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1. Introduction 

Human reasoning depends on the ability to represent the world not only in terms of individual concepts, such as beagle and dog, but 
also in terms of the relations between concepts, such as the fact that a beagle is a kind of dog. Computational models of human 
analogical reasoning have incorporated explicit representations of relations, which enable a relation to link multiple pairs of concepts 
while remaining distinct from any particular pair of concepts (e.g., Falkenhainer, Forbus, & Gentner, 1989; Hummel & Holyoak, 
1997). For example, the relation is a kind of can also link spear and weapon, and an indefinite number of other concept pairs, while 
maintaining its separate identity. 

1.1. Relational luring in recognition memory 

If relations have explicit representations used in reasoning tasks, then it may be possible to detect their influence in other cognitive 
tasks that do not directly involve reasoning. It has been reported that relation similarity can impact episodic memory in recognition 
tasks, giving rise to a phenomenon termed relational luring (Popov et al., 2017). In a typical experiment, participants were shown a 
sequence of word pairs to commit to memory, and at test were asked to indicate that a given word pair was ‘old’ if they had seen that 
exact word pair previously in the sequence, ‘recombined’ if it was a novel combination of individual words that they had seen before, 
or ‘new’ if they had not previously seen either the full word pair or its constituent words. Popov et al. showed that participants were 
more likely to misclassify ‘recombined’ word pairs as ‘old’, and took longer to correctly identify ‘recombined’ word pairs, when the 
pair instantiated a relation made familiar by previously presented pairs, as compared to word pairs that did not instantiate the same 
relation as a prior word pair. Moreover, the degree to which ‘recombined’ word pairs were misclassified, and correct responses were 
delayed, increased linearly with the number of instances of that relation a participant had seen previously. If a given relation is 
encoded explicitly as an item in memory, then relational luring is consistent with prior work showing that repeated presentations of a 
given item increase the likelihood of recognizing that item on a subsequent presentation (Challis & Sidhu, 1993; Reder et al., 2000). 

Relational luring constitutes an example of false memory based on semantic similarity, extending massive evidence for semantic 
effects on false memory for individual words (e.g., Roediger & McDermott, 1995). However, relational luring has the distinctive 
property that it appears to arise from specific pairings of words, rather than the individual words in the pair. On the face of it, relational 
luring is naturally explained by assuming that an explicit representation of a semantic relation becomes increasingly familiar as it is 
activated by exposure to specific instances. The accrued familiarity of the relation then serves as a cue that tends to lead to false 
recognition of recombined word pairs instantiating the same relation. Thus, relational luring has been interpreted as providing evi-
dence for the role of explicit relations in guiding recognition memory (Popov et al., 2017). However, this assumption has never been 
formally tested in a computational model of recognition memory, nor compared against alternative possibilities based on non- 
relational semantic analyses. The present paper fills this gap. 

1.2. Word embeddings as predictors of analogical reasoning and word recognition 

Advances in natural language processing (NLP) have generated representations of individual word meanings (e.g., Devlin, Chang, 
Lee, & Toutanova, 2019; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013; Pennington, Socher, & Manning, 2014), referred to as word 
embeddings. These representations are high-dimensional vectors that constitute hidden layers of activation within neural network 
models trained to predict patterns of text in sequence as they appear in large corpora. Word embeddings have been used to predict 
human judgments of lexical similarity and probability (for a review see Bhatia & Aka, 2022; for a discussion of and response to cri-
tiques of embeddings as psychological models, see Günther, Rinaldi, & Marelli, 2019). 

Crucially, word embeddings may capture rich aspects of conceptual meaning that go beyond surface features and direct category 
relations. For example, Utsumi (2020) was able to extract information from embeddings sufficient to predict the values of about 500 
words on most of 65 semantic features (e.g., the extent to which something is social) for which neurobiological correlates have been 
identified. Such successes raise the possibility that relational luring might be explicable in terms of lexical overlap based solely on 
embeddings for word pairs, without necessarily involving explicit relation representations. In particular, embeddings might capture 
information about characteristic relational roles that concepts play (Goldwater, Markman, & Stilwell, 2011; Jones & Love, 2007; 
Markman & Stilwell, 2001). For example, concatenated embeddings for the word pair nurse:hospital might include features that 
implicitly encode the facts that nurse is a human occupation and that hospital is a work location, perhaps creating a basis for relational 
luring. 

In the present study we build on recent theoretical developments in which embeddings have been used to learn relation repre-
sentations that can provide a basis for analogical reasoning. A number of alternative methods can be used to define similarity between 
word pairs. In the present study, we examine alternative methods that take the same embeddings as inputs, extracted using Word2vec 
(Mikolov et al., 2013). All these methods compute word-pair similarity based on cosine similarity (a measure well-suited for high- 
dimensional spaces). Critically, relation representations can either be based on explicit re-representations within a new relational 
space (i.e., a representational space in which the dimensions code abstract semantic relations such as hypernym, antonym, and cause; Lu, 
Chen, & Holyoak, 2012; Lu, Wu, & Holyoak, 2019; Lu, Ichien, & Holyoak, 2022), or can be implicit in the raw word embeddings 
(Mikolov et al., 2013; Pennington et al., 2014). 
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2. Experiment 1 

We first report an experiment designed to elicit relational luring. Rather than studying word pairs in the context solely of a memory 
task (Popov et al., 2017), participants were exposed to word pairs while making specific judgments about them (so that the encoding of 
these word pairs for a subsequent memory task was more incidental in nature). The first encoding task, involving relatedness judg-
ments, required participants to decide whether the two words in a pair were related. Because relatedness judgments do not require 
identification of any specific relation, they can potentially be made using an implicit relation representation. The second encoding task, 
verbal analogical reasoning, required participants to decide whether or not an analogy in A:B:: C:D format was valid. Evaluating 
analogies requires attention to the similarity of the specific relations linking the A:B and the C:D word pairs, and hence is likely to 
depend on explicit relation representations (consistent with previous computational modeling; Lu et al., 2019). Each task was followed 
by a test of recognition memory, which included conditions designed to potentially elicit relational luring. By comparing memory 
performance following the relatedness and verbal analogy tasks, we sought to test whether relational luring depends on determining 
the particular semantic relations holding between word pairs (as evoked by the verbal analogy task), or whether a more generic 
assessment of whether a discernible relation exists between word pairs (as evoked by the relatedness task) is sufficient. 

Critically, both the analogy task and the subsequent recognition memory task can be modeled using the same alternative measures 
of word-pair similarity. Specifically, we compare a measure of relational similarity between explicit relation representations with a 
measure of lexical similarity between individual word meanings. Based on previous findings, we predicted that the measure based on 
relational similarity would prove most effective for the analogy task. The key question is whether recognition memory will be best 
predicted by the same relational measure of word-pair similarity, or whether a dissociation will be observed between the analogical 
reasoning and recognition memory tasks. Procedures and analyses for all experiments were pre-registered on AsPredicted (#66576). 
All materials and analysis scripts are available on OSF (https://osf.io/vmn4z/). 

2.1. Method 

2.1.1. Participants 
Participants were 111 undergraduates (Mage = 20.12, SDage = 1.94) at either the University of California, Los Angeles (UCLA) (n =

93) or at Dartmouth College (n = 18). Across the entire sample, participants were 81 female, 20 male, 1 nonbinary, and 9 gender not 
reported. All participants completed our tasks online to obtain partial course credit in a psychology class. The study was approved by 
the Institutional Review Boards at UCLA and at Dartmouth College. Participants were self-assessed proficient English speakers, and 
82% were native English speakers. All analyses excluded data from 18 participants whose median correct response time, number of 
omitted responses, and/or d’ were 2.5 standard deviations away from the sample mean on any task (final sample size: 93). 

2.1.2. Procedure 
All participants completed two blocks, each of which included three tasks. The first task in each block was an incidental encoding 

task involving either relatedness judgments (first block) or analogical reasoning (second block). The second task in each block was a 
demanding task involving visuospatial reasoning (a short form of Raven’s Progressive Matrices); for our current purposes, this served 
as a distractor task. The third task in each block was a recognition memory task. The assignment of word pairs to each block was 
counterbalanced across participants. Participants were first shown a list of all the tasks they would be completing during the exper-
imental session and thus made aware before starting the experiment that they would be completing memory tasks. Importantly, 
participants were not directly told that the relatedness and verbal analogy tasks were at all related to the memory tasks. The entire test 
session lasted approximately one hour. Fig. 1 presents the sequence of tasks that each participant completed during an experimental 
session. 

Prior to beginning the relatedness task, participants were shown examples of related and unrelated word pairs and then completed 
seven practice trials. Prior to beginning the verbal analogy task, participants were shown examples of valid (e.g., carpenter:hammer and 
nurse:syringe) and invalid analogies (loop:ice and bowl:cereal), and then completed four practice trials. Neither the individual words in 
the practice trials, nor the relations instantiated by them, overlapped with the word pairs used in the actual encoding tasks. 

2.1.3. Materials and encoding tasks 
In the relatedness task, participants were presented with a sequence of word pairs and asked to judge whether each pair was 

Fig. 1. Task structure. Participants completed six tasks, divided into two blocks (columns) of three tasks each. Task order was fixed. The two blocks 
of tasks were the same except for the encoding task, with assignment of specific word pairs counterbalanced across the two sets. 
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comprised of words that were semantically related (e.g., footwear:boot) or not (e.g., mascara:spoon). Word pairs were semantically 
related 90% of the time. In the verbal analogy task, participants were sequentially presented with two word pairs on each trial, and 
were asked to judge whether each set constituted a valid analogy (e.g., fin:shark and wing:butterfly) or not (e.g. device:calculator and 
thorn:rose). Valid analogies were shown on 54% of trials. 

Both encoding tasks involved word pairs that instantiated one of three abstract semantic relations: category:exemplar (e.g., bird: 
robin), part:whole (e.g., toe:foot), and place:thing (e.g., store:groceries), or else were not semantically related (e.g., mascara:spoon). To 
create stimuli for these tasks, a total of 200 word pairs were constructed out of 400 unique words. Words were selected based on 
concreteness and prevalence norms. Word concreteness is the extent that a given word refers to something that exists in reality and of 
which one can have immediate sensory (visual, auditory, gustatory, tactile, or olfactory) experience. We used concreteness norms 
presented by Brysbaert, Warriner, and Kuperman (2014), which were collected as ratings on a 5-point scale from 1 (abstract) to 5 
(concrete). Word pair stimuli were eliminated from our study if either of its two words had a mean concreteness rating lower than 4. 
Word prevalence is the proportion of people who know that word. We used prevalence ratings presented by Brysbaert, Mandera, 
McCormick, and Keuleers (2019), which consisted of z-scores such that words received negative prevalence ratings if fewer than 50% 
of people said they knew those words. Word-pair stimuli were eliminated from our study if either of the two words in a pair had a 
prevalence rating lower than 2. In our analyses, we also included word-pair concreteness and prevelance as covariates, along with 
word-pair length and frequency based on norms derived from American film and television show subtitles (Brysbaert and New, 2009). 

The word pairs were evenly distributed across two 100 word-pair lists, one used for the relatedness task and the other used for the 
analogy task; which of the two lists was used for which encoding task was counterbalanced across participants. Within each list of 100 
word pairs, 10 unrelated pairs consisted of words with no discernible semantic relation between them. The remaining 90 pairs were 
evenly distributed across the three abstract semantic relations (i.e., 30 word pairs per relation). Participants saw one list during the 
relatedness task and the other list during the verbal analogy task; which list was presented during each task was counterbalanced 
across participants. The analogy task appears to require explicit comparison of relations; hence this task was always placed in the 
second block (i.e., after the relatedness task), so as to avoid priming an explicit strategy of identifying abstract relations in the 
relatedness task (which potentially could be performed using a more implicit strategy of simply assessing the presence versus absence 
of any relation). 

Each encoding task consisted of two blocks with a self-paced break between them. Each word pair within a given list was presented 
once during each block, and in each block word pairs were presented in a different order. Thus, each block of the relatedness task 
consisted of 100 trials (with one word pair shown per trial), yielding 200 trials in total. Each block of the verbal analogy task consisted 
of 50 trials (with two word pairs shown per trial), yielding 100 trials in total. In each encoding task, participants saw each word pair 
twice across the two blocks. 

2.1.4. Memory tasks 
Following each encoding task and the intervening distractor task, participants completed an old/new recognition task in which 

they were presented with a sequence of 54 word pairs. Each word pair was constructed from individual words that participants had 
seen during their prior encoding task. Thus, each individual word was familiar to participants; however, they were recombined into 
new word pairs on 2/3 of the trials (i.e., 36 trials). Participants were asked to identify whether or not they had seen that exact 
combination of words in the previous encoding task, as well as to rate how confident they were in their judgment using a four-point 
scale: “Definitely New”, “Maybe New”, “Maybe Old”, and “Definitely Old”. The specific word pairs differed across the memory tasks in 
the two blocks. Participants were given a brief tutorial on the memory task prior to beginning each such task. None of the individual 
words or relations instantiated in this tutorial overlapped with those used in the actual task. 

A total of 108 word pairs were used for the memory tasks, with each word pair drawn from one of four types (see Table 1). The first 
type, intact, consisted of “old” word pairs that were shown during the encoding task (relation identification or analogy). The other 
three types of word pairs were “new” pairs. All of these were constructed by recombining words that had appeared in the immediately 
prior encoding task, so that individual words were now paired differently, generating novel word pairs distinct from those used in the 
encoding task. More specifically, relationally familiar word pairs consisted of recombined word pairs instantiating the same relations as 
the word pairs presented during the encoding tasks (i.e., part:whole, category:exemplar, and place:thing). Relationally unfamiliar word 
pairs consisted of recombined word pairs instantiating a relation type (A is similar to B) to which participants had not been exposed in 
the encoding phase. These word pairs were formed using concepts with overlapping salient attributes (e.g., bartender:cashier), and 
hence were relationally similar to one another, but not with respect to any of the three relations included in the encoding tasks. Finally, 
unrelated word pairs consisted of recombined word pairs that were not semantically related in any discernible way (e.g., cookbook: 
remote). For intact pairs, responses of either “Maybe Old” or “Definitely Old” were scored as correct. The other three types of trials 
consisted of word pairs that were not used in either encoding task; either “Maybe New” or “Definitely New” were scored as correct 

Table 1 
Properties of each stimulus type used during recognition memory task.  

Type of test word pairs Previously studied individual words? Previously studied word pairs? Previously studied abstract relations? Valid relation? 

intact ✔ ✔ ✔ ✔ 
familiar ✔  ✔ ✔ 
unfamiliar ✔   ✔ 
unrelated ✔     
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responses. Among the 54 word pairs tested in the recognition memory task, 18 pairs were intact, 18 pairs were relationally familiar, 9 
pairs were relationally unfamiliar, and 9 pairs were unrelated. 

To generate “new” pairs by recombining words in the encoding tasks, another relevant factor (in addition to controlling relations 
instantiated by word pairs) that varied among the recognition stimuli was consistency of word position between the encoding tasks and 
the memory task (i.e., assignment of a given word to first versus second position in a pair for study versus test pairs). Popov et al. 
(2017) constructed their stimulus set using a large number of different relations with a few exemplar word pairs of each, enabling them 
to keep the position of any word in the test pairs the same as its position in the encoding tasks. In contrast, because our study used a 
small number of relations (three) in the encoding tasks and a large number of exemplar word pairs per relation (30 pairs per relation), 
it was impossible to maintain the same position for all words between the encoding tasks and the memory test. 

In Experiment 1, for test pairs used in the memory task, the position of at least one word was preserved from its position in a study 
pair most often for intact pairs (100%), followed by familiar (95%), unfamiliar (84%), and unrelated pairs (66%). These differences in 
word positions across test pair types reflect the fact that word position naturally correlates with the role that a word plays in a relation 
(e.g., in a category:exemplar pair such as food:spaghetti, food fills the category role and spaghetti fills the exemplar role). For the three 
relations included in the encoding tasks (part:whole, category:exemplar, and place:thing), the terms occupying the first position in study 
pairs, and thus assigned to the first role in the corresponding relations (i.e., part, category, and place roles) often had to be assigned to 
the same role in familiar test pairs. Moreover, when words assigned to the second role of familiar test pairs (e.g., butterfly assigned to 
the exemplar role in the category:exemplar test pair insect:butterfly) was assigned to a different role from its study pair (e.g., wing: 
butterfly), that word usually still occupied the second position in its relation (e.g., the whole role in the part:whole relation). Thus, word 
position tended to be preserved for both words in familiar test pairs. On the other hand, in creating unfamiliar test word pairs that 
instantiated the similar relation, we were often forced to combine words that each filled the same role in different study pairs. For 
example, the unfamiliar test pair tail:fin was generated using words each assigned to the part role in part:whole study pairs (tail:skunk 
and fin:shark). This role-matching constraint tended to yield a position change of one word from study pairs to unfamiliar test pairs, 
whereas the position of the other word was usually consistent between study and test. In general, playing the same role within a 
relational structure tends to increase the similarity between distinct entities (Jones & Love, 2007). 

2.2. Results 

2.2.1. Encoding tasks 
Overall, participants performed well on both of the encoding tasks: relatedness task, MAcc = 0.94, SDAcc = 0.03; verbal analogy task, 

MAcc = 0.76, SDAcc = 0.12. Fig. 2 shows human accuracy in identifying valid and invalid analogy in the encoding task. Note that the 
false alarm rate for unrelated word pairs on the relatedness task was low (MFA = .18, SDFA = .16), yielding a high d-prime (MD’ = 2.80; 
SDD’ = 0.66). Thus, even though 90% of the trials involved semantically related word pairs, participants completed the task as 
instructed, and did not achieve their high accuracy by simply classifying all word pairs as related. 

2.2.2. Recognition memory 
Participants showed good overall performance in recognizing studied word pairs following both encoding tasks (relatedness: MAcc 

= 0.81, SDAcc = 0.12; verbal analogy: MAcc = 0.80, SDAcc = 0.13). They correctly recognized old word pairs with responses of either 
“Maybe Old” or “Definitely Old”, exhibiting a high hit rate (relatedness: MHit = 0.90, SDHit = 0.12; verbal analogy: MHit = 0.86, SDHit =

Fig. 2. Human and model-predicted (i.e., relational and lexical) ‘valid’ responses on the verbal analogy task in Experiment 1. Darker bars represent 
hits on valid analogies, and lighter bars represent false alarms on invalid analogies. Error bars reflect ±1 standard error of the mean for 
human responses. 
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0.14). However, they also sometimes misrecognized recombined word pairs (familiar, unfamiliar, or unrelated), exhibiting a sub-
stantial false alarm rate (relatedness: MFA = 0.24, SDFA = 0.16; verbal analogy: MFA = 0.24, SDFA = 0.17). Fig. 3 shows that across 
encoding tasks, false alarms (i.e., mistakenly judging recombined new word pairs as studied old pairs) were more frequent for rela-
tionally familiar word pairs (relatedness: MFA = 0.33, SDFA = 0.19; verbal analogy: MFA = 0.30, SDFA = 0.19) than relationally un-
familiar word pairs (relatedness: MFA = 0.21, SDFA = 0.20; verbal analogy: MFA = 0.22, SDFA = 0.22), and for unfamiliar than unrelated 
pairs (relatedness: MFA = 0.09, SDFA = 16; verbal analogy: MFA = 0.11, SDFA = 0.19). The higher false alarm rate for familiar than 
unfamiliar pairs is consistent with the relational luring phenomenon reported by Popov et al. (2017). 

To statistically test whether Experiment 1 replicated the relational luring effect, while controlling for other potential covariates, we 
analyzed false alarm data using logistic mixed-effects models. We used the glmer function from version 1.1.26 of the LME4 package 
(Bates, Maechler, Bolker, & Walker, 2015), using R version 4.1.1 (R Core Team, 2021) to define logistic mixed-effects models of the 
data. Normed values on concreteness, prevalence, frequency, and length were treated as covariates. Since each of these metrics 
characterize individual words, we took the mean of a given metric for the two words constituting each word pair. For example, the 
word pair food:salad would have a concreteness of 4.89 because food has a concreteness rating of 4.80 and salad 4.97. 

We defined a full model including participant and word pair as random effects and the following fixed effects: stimulus type (familiar 
vs. unfamiliar vs. unrelated) and prior encoding task (relation detection vs. verbal analogy), with the following covariates: within-block trial 
number, concreteness, prevalence, frequency, and word pair length. We first examined the effect of prior encoding task on false alarms by 
defining a reduced model that lacked the prior encoding task term but that was otherwise identical to the full model. Removing this term 
did not increase model prediction error, ΔAIC = 2.0, χ2(1) = 0.04, p = .85. This finding reveals that participants did not differ reliably 
in their false alarm rates across the two encoding tasks (relation detection or verbal analogy). Contrary to our expectation, the relation 
detection task (which might be performed using more implicit processing of relations) was just as effective as the analogy task in 
producing false alarms on the recognition task. 

Consistent with previous work (Popov et al., 2017), we hypothesized that participants would make false alarms more often to 
relationally familiar than relationally unfamiliar word pairs (i.e., showing a relational luring effect). In order to test this hypothesis, we 
fit a reduced model that removed the stimulus type fixed-effect term but that was otherwise identical to the full model, and then 
compared the prediction error between this reduced model and the full model. Indeed, we found that removing the stimulus type term 
from the full model increased prediction error, ΔAIC = 33.6, χ2(2) = 37.68, p < .001. Inspecting the fit parameters of the full model, we 
also found that model predictions of false alarm rates for familiar word pairs were reliably higher than those for unfamiliar word pairs, 
β = 0.86, z = 3.31, p < .001, indicating that participants were more likely to false alarm on relationally familiar than relationally 
unfamiliar word pairs. We also found that predictions of false alarm rates for unfamiliar word pairs were reliably higher than those for 
unrelated word pairs, β = 1.06, z = 3.31, p < .001, indicating that the mere presence of a semantic relation induced participants to make 
false alarms more often. Moreover, the fact that this effect held across both prior encoding tasks indicates that detecting relations 
within the relatedness task was sufficient to elicit relational luring. 

Experiment 1 thus yielded a higher false alarm rate for relationally familiar than unfamiliar pairs, consistent with the relational 
luring phenomenon reported by Popov et al. (2017). Their study maintained the same word positions between study and test pairs, 
whereas our study varied word positions between the encoding tasks and the memory test task. In our study, differences in false alarm 
rates between the familiar and unfamiliar types could potentially be due to the correlated differences in word position consistency. In a 
further analysis, we fit a linear mixed-effect model of false alarm data using the full model described above, but with the added co-
variate of the number of words in the same position from study to test for each word pair (0 vs. 1 vs. 2). We found that omitting both the 
stimulus type term, ΔAIC = 15.9, χ2(2) = 19.96, p < .001, and the word position term, ΔAIC = 5.8, χ2(1) = 19.96, p = .005, increased 

Fig. 3. Human false-alarm rates on the recognition memory task in Experiment 1, broken down by relatedness and verbal analogy encoding task 
and by familiar, unfamiliar, and unrelated stimulus types. Error bars reflect ± SEM. 
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model prediction error. Inspecting fit parameters, we found that familiar word pairs did not reliably induce higher false alarm rates 
than unfamiliar word pairs after accounting for word position, β = 0.52, z = 1.93, p = .054 , but that unfamiliar word pairs still induced 
higher false alarm rates than unrelated word pairs, β = 0.95, z = 3.09, p = .002. 

3. Experiment 2 

Although Experiment 1 demonstrated relational luring, we were unable to rule out the possibility that the observed false alarm 
differences might be attributable to variations in consistency of word positions. Moreover, the previous experiment consistently used 
category:exemplar, part:whole, and place:thing as the familiar relations during the memory tasks and similar as the unfamiliar relation, 
and so we were unable to show that the observed luring effect generalized beyond this particular comparison of relations. In order to 
address these issues with Experiment 1, we carried out a follow-up experiment using materials adapted from Popov et al. (2017). These 
materials perfectly preserved word position for all stimuli between study and test phases, and they enabled us to counterbalance the 
particular relations that served as familiar and unfamiliar relations across participants. 

3.1. Method 

3.1.1. Participants 
Participants were 106 UCLA undergraduates (Mage = 20.92, SDage = 4.24). Across the entire sample, participants included 92 fe-

male, 12 male, 1 nonbinary, and 1 gender not reported. All participants completed our tasks online to obtain partial course credit in a 
psychology class. The study was approved by the Institutional Review Boards at UCLA. All analyses excluded data from 8 participants 
whose median correct response time, number of omitted responses, and/or d’ were 2.5 standard deviations away from the sample 
mean on any task (final sample size: 98). 

3.1.2. Procedure 
Because relatedness judgments and solving verbal analogies both proved sufficient to induce relational luring in Experiment 1, we 

employed relatedness judgments as the sole encoding task for Experiment 2. Thus, in contrast to Experiment 1, all participants in 
Experiment 2 completed a single block of three tasks: Relatedness judgments served as the encoding task, RPM problems served as the 
distractor task, and old/new recognition served as the memory task. As in Experiment 1, participants were first shown a list of all the 
tasks they would be completing during the experimental session (and thus made aware before starting the experiment that they would 
be completing a memory task but were not directly told that the relatedness task would be related to the memory task). The entire test 
session lasted approximately half an hour. Fig. 4 presents the sequence of tasks that each participant completed during an experimental 
session. 

Prior to beginning the relatedness task, participants were shown six examples of related and unrelated word pairs and then 
completed six practice trials. As with Experiment 1, neither the individual words in the practice trials, nor the relations instantiated by 
them, overlapped with the word pairs used in the actual encoding task. 

3.1.3. Materials and tasks 
Word pair stimuli were adapted from English translations of Bulgarian stimuli used in Experiment 1 of Popov et al. (2017), and 

originally generated by participants in a study by (Popov & Hristova, 2015). All stimuli were based on a pool of 84 semantically-related 
word pairs. To create the present stimulus set, we edited Popov et al.’s translated stimuli in a few ways. We reversed word pairs that 
formed a common English bigram (e.g., eye:sight became sight:eye), replaced low-frequency words with more commonly-used asso-
ciates (e.g., schnitzel:calf became steak:cow), replaced English words that were translated from multiple distinct Bulgarian words (e.g., 
teacher:student and professor:student became teacher:student and parent:child), and replaced words yielding an unclear semantic relation 
with more obvious relata (e.g., soup:plate became soup:bowl, which was then reversed to avoid a common bigram, ultimately yielding 
bowl:soup). 

Each of the 84 word pairs had an analogous word pair (e.g., atom:nucleus and planet:core), and each of these 42 pairs of analogous 
word pairs was grouped with another pair of analogous word pairs (e.g., atom:nucleus and planet:core were matched with bottle:cork and 
jar:lid), yielding 21 stimulus sets (see Table 2 for an example). These stimulus sets were used to counterbalance across participants 
which stimuli were assigned to the encoding task and memory task. For a given participant, one word pair from each stimulus set was 

Fig. 4. Task structure for Experiment 2. Participants completed three tasks in a fixed order.  
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omitted (e.g., jar:lid), and individual words were swapped between two remaining disanalogous word pairs within each set (e.g., 
planet:core and bottle:cork), yielding two unrelated word pairs (e.g., planet:cork and bottle:core) for the encoding task. The final 
remaining word pair in that set was left intact, and served as a related word pair (e.g., atom:nucleus) for the encoding task. For that 
same participant, individual words in disanalogous word pairs were swapped back, yielding two “new” word pairs for the memory task 
(e.g., planet:core and bottle:cork), and the third word pair was again left intact and served as an “old” word pair (e.g., atom:nucleus) for 
the memory task. Of the two “new” word pairs generated from each stimulus set, one was analogous to the “old” word pair (e.g., plant: 
core) and thus served as a relationally familiar stimulus, while the other was not (e.g., bottle:cork) and thus served as a relationally 
unfamiliar stimulus. Table 3 shows the encoding-task and memory-task stimuli generated from a single stimulus set for two distinct 
participants. 

This scheme yielded 8 distinct lists of 63 word pairs for each of the encoding and memory tasks; which participants saw which lists 
was randomized. For the encoding task, 21 word pairs were semantically related (33%), and the remaining 42 were not semantically 
related (66%) (yielding a better balance between related and unrelated words than did the relatedness task in Experiment 1). For the 
memory task, 21 word pairs were intact (“old” word pairs seen during the relatedness task) and the remaining 42 were “new”, of which 
21 were relationally familiar and the other 21 were relationally unfamiliar. Trial order for the encoding tasks was also counterbalanced 
such that participants assigned to a given trial list were presented either with one randomized sequence of word pairs or its reverse. 

Trial order for the memory tasks was more constrained. Note that each ‘new’ but relationally familiar word pair (e.g., planet:core) 
had an analogous ‘old’ counterpart (e.g., atom:nucleus). In contrast to Experiment 1, each ‘old’ word pair exemplified a unique semantic 
relation (e.g., object:center) during the encoding task. Accordingly, between the old word pair and its relationally familiar counterpart, 
whichever appeared first during the memory task constituted participants’ first exposure to that semantic relation during the task. 
Popov et al. (2017) found that correct response times were reliably higher (and false alarms were numerically higher) for relationally 
familiar word pairs than relationally unfamiliar word pairs only when relationally familiar word pairs served as the first instance of 
their semantic relation during the memory task—that is, when they appeared before their ‘old’ analogs but not when they appeared 
after. (We replicated this finding in a pilot study.) It seems likely that participants would notice (at least implicitly) that a given relation 
was “used up” once it had occurred once, and hence would avoid making false alarms to further instantiations of the same relation. In 
order to avoid this complication due to stimulus ordering, we generated a single trial order for each memory task list with the 
constraint that relationally familiar and the relationally unfamiliar word pairs drawn from the same stimulus set both appeared before 
their corresponding ‘old’ word pair. We counterbalanced whether the relationally familiar word pair appeared before or after its 
corresponding relationally unfamiliar word pair within each list. Otherwise, the trial order for each list was randomized. 

3.2. Results 

3.2.1. Encoding task 
Overall, participants performed well on the encoding task: MAcc = 0.90, SDAcc = 0.06, with a low rate of false positive judgments 

(MFA = 0.09, SDFA = 0.06). 

3.2.2. Memory task 
Overall, participants performed well on the memory task: MAcc = 0.76, SDAcc = 0.113, with a moderately high false-alarm rate (MFA 

= 0.16, SDFA = 0.14). We also found that false alarms were more frequent for relationally familiar word pairs (MFA = 0.17, SDFA =

0.16) than relationally unfamiliar word pairs (MFA = 0.14, SDFA = 0.13). As in Experiment 1, we fit logistic mixed-effects models to the 
human false-alarm data. We defined a full model including participant and word pair as random effects, stimulus type (familiar vs. 
unfamiliar) as a fixed effect, with the following covariates: trial number, concreteness, prevalence, frequency, and word pair length. We 
found that omitting the stimulus type term reliably increased model prediction error, ΔAIC = 8, χ2(1) = 9.97, p = .002, indicating that 

Table 2 
Example of a stimulus set used in Experiment 2, adapted from Popov et al. (2017).  

ID Word pair Relation 

A atom:nucleus object:center 
B planet:core 
X bottle:cork 

object:closure Y jar:lid  

Table 3 
Stimuli in Experiment 2 generated from the set presented in Table 2, adapted from Popov et al. (2017).  

Participant ID Encoded pair Encoded condition Memory pair Memory condition 

1 
A atom:nucleus related atom:nucleus intact 
B planet:cork not related planet:core familiar 
X bottle:core not related bottle:cork unfamiliar 

2 
Y jar:lid related jar:lid intact 
X atom:cork not related bottle:cork familiar 
A bottle:nucleus not related atom:nucleus unfamiliar  
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participants were more likely to false alarm on relationally familiar than relationally unfamiliar word pairs (see Fig. 5). Hence, despite 
various methodological differences between the present study and the experiment reported by Popov et al. (2017), we obtained the 
same basic finding: higher false alarm rate for familiar than unfamiliar pairs. Experiment 2 also demonstrated relational luring using 
materials in which word position was held constant across study and test stimuli. Notably, the magnitude of this luring effect (0.03) is 
smaller than that demonstrated in Experiment 1 (0.11). While there are a number of important differences between the two experi-
ments (e.g., the number of relations, the number of word pair examples of each relation, the particular relations used for each con-
dition), we suspect that the word position confound that is present in Experiment 1 but controlled for in Experiment 2 is primarily 
responsible for the difference in effect magnitude. 

4. Tests of computational models 

4.1. Measures of word-pair similarity 

To predict performance on both the analogy task and the recognition memory task, we compared two measures of similarity be-
tween word pairs: (1) relational: similarity of word pairs based on the similarity of the explicit relation between the two words in each 
individual pair; (2) lexical: similarity of word pairs computed directly from the similarities of the individual words in each pair. We 
implemented specific versions of both possibilities, all rooted in 300-dimensional word embeddings created by Word2vec. 

As shown in Fig. 6 top panel, to compute relational similarity we used relation vectors generated by Bayesian Analogy with Relational 
Transformations (BART; Lu et al., 2012, 2019). BART assumes that specific semantic relations between words are coded as distributed 
representations over a set of abstract relations. The BART model takes concatenated pairs of Word2vec vectors as input, and then uses 
supervised learning with both positive and negative examples to acquire representations of individual semantic relations. 

After learning, the BART-based relational model calculates a relation vector consisting of the posterior probability that a word pair 
instantiates each of the learned relations (for details of the training procedure, see Ichien, Lu, & Holyoak, 2022), as shown in Fig. 6 left 
top panel. The relational model uses its pool of 270 learned relations to create a distributed representation of the specific relation 
between any two paired words A:B and C:D. The posterior probabilities calculated for all learned relations form a 270-dimensional 
relation vector Ri for the A:B word pair and relation vector Rj for the C:D word pair, where each dimension codes how likely a 
word pair instantiates a particular learned relation. The distance between word pairs i and j is computed as the cosine distance between 
corresponding relation vectors Ri and Rj: 

dRelij = cos
(
Ri,,Rj

)
. (1) 

As shown in Fig. 6 left bottom panel, to compute lexical similarity the meaning of a word pair is represented by the two individual 
semantic vectors respectively representing each word. We use fA, fB to denote the semantic vector for the two words in a word pair A:B, 
and fC, fDto denote the semantic vector for the words in pair C:D. We compute the distance between word pairs i and j as the mean of the 
distances between fAi and fCj and between fBi and fDj: 

dLexij =
cos

(
fAi , fCj

)
+ cos

(
fBi , fDj

)

2
. (2) 

This representation is nonrelational, coding word pairs solely in terms of the meanings of the individual words (as determined by 

Fig. 5. Human false-alarm rates and model predictions on the recognition memory task in Experiment 2, broken down according to stimulus type 
(relationally familiar and relationally unfamiliar word pairs). Error bars reflect ±1 SEM. 
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their Word2vec embeddings). 
To provide a preliminary sense of how well the two basic measures of word-pair similarity (relational and lexical) capture the 

categorical distinctions among the three relation types used in the encoding tasks for Experiment 1 (category:exemplar, part:whole, and 
place:thing), Fig. 6 in the right panels plots 216 word pairs (180 related word pairs used for the encoding tasks and 36 relationally 
familiar recombinations used for the memory tasks) on a 2-dimensional projection of the similarity space derived using each of the two 
measures. From visual inspection, it is clear that the relational measure (top) separates the three types of pairs into clusters corre-
sponding to semantic categories more clearly than does the lexical measure (bottom); however, the lexical measure also predicts 
relation type to some extent, as the three clusters are somewhat separated (despite overlaps across relation categories). 

Fig. 6. An illustration of relation similarity model (left top panel) and lexical similarity model (left bottom panel), and the resulting 2-D plot of 
similarity space derived using each (right panel). The scatter plots of similarity spaces are derived from 216 word-pair stimuli instantiating category: 
exemplar (blue circles), part:whole (magenta squares), and place:thing (green diamonds) relations. Plotted stimuli on the right consist of related word 
pairs used for encoding tasks (180 total) and relationally familiar recombinations used for memory tasks (36 total). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Human item-level ‘valid’ response rates on verbal analogy problems in Experiment 1, plotted against z-scored distance (dissimilarity) 
metrics predicted by the relational model (left) and by the lexical model (right). Each point represents a single analogy problem, and point shade 
reflects whether a problem features a valid analogy (dark grey) or an invalid analogy (light grey). The scatter plots were overlaid with a fitted 
regression line. 
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4.2. Modeling verbal analogical reasoning 

Performance on the verbal analogy task in Experiment 1 was modeled directly by the BART-based relational model, which in 
addition to learning relations (as described above), can also be used to predict behavioral (Lu et al., 2019) and neural (Chiang, Peng, 
Lu, Holyoak, & Monti, 2021) responses to analogy problems. In order to predict yes/no decisions about analogy problems, we 
computed cosine distances between representations of the A:B and C:D word pairs, and then searched for a decision threshold that 
generate the best model performance, such that word pairs with distances below the threshold indicate a valid analogy and those above 
indicate an invalid analogy. In calculating distance for the purpose of solving analogy problems, we used relational and lexical 
similarity metrics. Based on prior modeling of verbal analogical reasoning (Chiang et al., 2021; Lu et al., 2019) and of explicit 
judgments of relation similarity (Ichien et al., 2022), we predicted that the model based on relational similarity would best predict 
human judgments on the explicit analogy task. 

Fig. 2 (see above) presents the proportion of ‘valid’ responses for models as well as humans, broken down by valid analogies (darker 
bars) and invalid analogies (lighter bars). Overall, the BART-based relational model achieved higher accuracy (0.75), nearly matching 
human proportion correct (0.76). The alternative model based on lexical (non-relational) similarity performed poorly (0.59 correct). 

An item-level analysis corroborated these results. We used the cocor package in R to test the difference between the extent that each 
similarity measure correlated with the frequency with which human reasoners judged each analogy as valid (Diedenhofen & Musch, 
2015). A Dunn and Clark’s (1969) z-test showed that relational similarity was more highly correlated with human responses (r = 0.47) 
than was lexical similarity (r = 0.21; z = 3.68, p < .001). Fig. 7 presents scatter plots of human item-level responses and z-scored model 
predictions based on each dissimilarity metric. Because this item-level analysis is based purely on dissimilarity predictions generated 
using each model, its results are independent of the decision threshold that was fit to maximize model accuracy in the analogy task. 
These simulation results thus confirm previous findings showing that the relational model based on explicit representations of semantic 
relations outperforms the alternative model based on lexical similarity in tasks involving verbal analogy, as well as explicit judgments 
of relation similarity (Chiang et al., 2021; Ichien et al., 2022; Lu et al., 2019). 

4.3. Modeling recognition memory 

To provide a formal account of relational luring, we adapted an established model of recognition memory, the Generalized Context 
Model (GCM; Nosofsky, 1986, 1988, 1991; Nosofsky & Zaki, 2003). GCM predicts old/new recognition judgments, and is closely 
related to several other successful models of episodic memory and categorization (e.g., Anderson, 1991; Kruschke, 1992; Love, Medin, 
& Gureckis, 2004). If a version of GCM is able to account for relation-based false alarms, we will have demonstrated that this phe-
nomenon is one of many that can be explained within a unified theoretical framework for exemplar-based recognition and 
categorization. 

In the version of GCM implemented here, we assume that recognition of a given word pair on a memory task is based on a 
comparison of similarities between that word pair and all word pairs presented during the prior encoding task (as described below). 
The probability with which a participant will classify a word pair i as one they had seen during the encoding task is given by 

P(old|i) =
Fi

Fi + k
, (3)  

where k is a parameter representing a criterion for recognition, and Fi is the familiarity of word pair i, defined as: 

Fi =
∑

j∈J
sij. (4) 

Here, J is the set of word pairs shown during the encoding task, and sij is the similarity between word pair i in the memory task and 
each word pair j from the encoding task. This similarity follows an exponential decay function (Shepard, 1987) of the psychological 
distance dij between word pairs i and j, 

sij = e− cdij , (5)  

where c is a scaling parameter representing the rate of decline in similarity with psychological distance between word pairs. When 
GCM is fit to data from individual participants, c is typically interpreted as a measure of a participant’s memory sensitivity (i.e., the 
extent to which they can discriminate between word pairs in memory, with higher values of c indicating greater sensitivity; Nosofsky, 
1988). This interpretation of c is appropriate when comparing among parameter values within a fixed representational space. In 
contrast, the present simulations fit the model to group-level data, varying the representations for word pairs over which the model 
operates (details below). Therefore in our simulations, c (because it varies across different types of representations) is naturally 
interpreted as the discriminability between word-pair items within a given representational space. Because representational spaces can 
vary according to arbitrary scaling properties, we scaled all model-generated distance values between 0 and 1. As our representations 
are high-dimensional, we adopt cosine distance to compute dij, rather than the Minkowski power formula typically used in previous 
work (e.g., Nosofsky, 1986, 1988, 1991; Nosofsky & Zaki, 2003). 

As the above equations make clear, GCM must be grounded on some measure of similarity between word pairs. We compared the 
two measures described above (relational and lexical) within the basic GCM framework. 
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4.3.1. Simulation results for Experiment 1 
First, we modeled human recognition memory performance for Experiment 1. Because we found no reliable differences in either 

false alarm rates or overall accuracy across the two encoding tasks, we simulated the data obtained by averaging responses across 
them. For this simulation, model predictions were P(old| i) for each word pair item; human judgments were the response proportions 
with which human participants judged a word pair item to be either “Maybe old” or “Definitely old”. We first ran the GCM using each of 
the two variants of similarity (relational vs. lexical) to fit item-level human data for all 54 word pairs tested in the recognition memory 
task. We used a binomial distribution as the likelihood function to fit the scaling parameter c and criterion parameter k that maximized 
the log-likelihood. Table 4 summarizes fit model parameters, maximum log-likelihood, and RMSD and spearman correlations between 
fit model predictions and item-level human data. Fig. 8 presents false-alarm rates for model-generated P(old| i) predictions using the 
fitted parameters, as well as human data, broken down by type of recombined word pairs. Crucially, using either of the alternative 
similarity calculations, GCM predicts the relational luring effect observed in the human data: higher false alarm rates for relationally 
familiar than for relationally unfamiliar word pairs. While Fig. 8 only shows false alarm rates to clearly highlight that human and 
model-predicted luring effects, both models also clearly discriminate between intact word pairs and recombined lures, predicting 
much higher hit rates for intact word pairs than false alarm rates for recombined lures, as observed in the human data (human: MHit =

0.88, SDHit = 0.10, MFA = 24, SDFA = 0.15; relational: MHit = 0.79, MFA = 0.26; lexical: MHit = 0.79, MFA = 0.28). 
Next, we assessed the robustness of the relational and lexical models to variations in the two model parameters: GCM’s scaling 

parameter c and its criterion parameter k. Specifically, we examined the space of parameters and item-level deviation between model 
predictions and human responses using all 54 test word pairs. To provide a quantitative comparison of the model’s robustness to 
predicting human data with each similarity metric, we computed the log model evidence (Friel & Wyse, 2012; Hoeting, Madigan, & 
Raftery, 1999) by averaging the log likelihood that each model predicts the proportion of our human participants who judged each 
word pair as old, over a range of the model parameter space (c = [0,50] with a stepsize of 0.5; k = [0.1,1] with a stepsize of 0.1). We 
selected this range of parameters to capture both the maximum log-likelihood model predictions of overall human data, as well as the 
maximum model-predicted luring effect for the current simulation, as well as simulations of Experiment 2 and Popov et al. Experiment 
1 discussed below. 

The computation of log model evidence assumes a uniform prior for parameters. The log model evidence calculation uses the same 
binomial likelihood function that we used for model fitting. As shown in Table 5, we found that the log model evidence for the 
relational similarity metric was Elog = − 1.324 × 104, substantially greater than that for lexical similarity, Elog = − 1.569 × 104. This 
analysis provides converging evidence that the relational model provides a more robust account of the human data than does the 
lexical model. 

We also examined the range of parameters in models that generate the effect of relational luring. In this analysis we focused on 
model judgments for two types of test pairs, relationally familiar and relationally unfamiliar word pairs. We identified the parameter 
combinations for which each model (relational or lexical) predicts more false alarms for relationally familiar than relationally un-
familiar word pairs. The results of this analysis are depicted in Fig. 8, where reddish cells indicate paired values of c and k with which 
models predict a false-alarm difference (i.e., mean P(old| i) for relationally familiar word pairs is greater than mean P(old| i) for 
relationally unfamiliar word pairs). Examination of the parameter range displayed in Fig. 9 clearly reveals that within the GCM 
framework, relational similarity is a more robust predictor of the relational luring effect than is lexical similarity. That is, relational 
similarity yields the predicted difference (i.e., luring effect) across a larger set of parameter values than does lexical similarity (hence 
there are many more dark cells in the left panel than in the right panel). 

To provide a quantitative comparison of the robustness with which model predicts relational luring using each similarity metric, we 
computed the luring-specific model evidence as the marginal likelihood that each model predicts the mean luring effect (i.e., greater 
false alarms to familiar than unfamiliar test items) observed in human data, averaged across the same range of the parameter space that 
we used to compute log model evidence (c = [0,50] with a stepsize of 0.5; k = [0.1,1] with a stepsize of 0.1). The luring-specific model 
evidence computation assumes a uniform prior for parameters. For each combination of parameters, likelihood of observing mean 
human luring effect was calculated using a Gaussian distribution centered at the model-predicted luring effect with the standard 
deviation SDluring = 0.1240, which was the observed standard deviation of luring effect among human participants. Model evidence 
was computed as the marginal likelihood by averaging the likelihood probabilities across the parameter space. As shown in Table 5, we 
found that the luring-specific model evidence for the relational similarity metric (Eluring = 2.533) was greater than that for lexical 
similarity (Eluring = 2.354). The greater robustness for the relational model in predicting the luring effect is consistent with the finding 
that relational similarity yields clearer separation of word pairs based on the three semantic relations than does lexical similarity (see 
Fig. 6, right panels). 

Even though the relational model was able to generate the luring effect more robustly than the lexical model, it is somewhat 
surprising that the lexical model was able to generate the relational luring effect at all. Since the lexical model only has access to 

Table 4 
GCM parameters fit to human data and fit-model performance for relational similarity (rel) and lexical similarity (lex).   

c k log-likelihood RMSD spearman  

rel lex rel lex rel lex rel lex rel lex 

Exp. 1 15.5 10.0 0.20 0.20 − 5.013 × 103 − 5.063 × 103 0.163 0.169 0.794 0.764 
Exp. 2 15.5 10.5 0.30 0.20 − 2.836 × 103 − 2.768 × 103 0.159 0.149 0.658 0.665 
Popov et al. Exp. 1 11.5 8.0 0.40 0.40 − 1.288 × 103 − 1.271 × 103 0.199 0.192 0.669 0.644  
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similarities among individual word meanings, how was it able to reproduce this putatively relational effect? The intuitive explanation 
is that some lexical properties are shared by words that serve the same semantic role in word pairs instantiating a relation. For ex-
amples, the category words in category:exemplar relations (e.g., reptile, food, or clothing) tend to be superordinate categories and abstract 
words, the part words in a part:whole relations (e.g., fang, wall, lobe) tend to be objects that do not commonly exist on their own but as 
parts of a larger structure, and the place words in place:thing relations (e.g., pond, bakery, chapel) are necessarily locations. 

Fig. 10 shows a multidimensional scaling result derived from lexical similarity between individual Word2vec embeddings for the 
first words in related word pairs used in the memory task from Experiment 1. This plot illustrates that words filling the first roles in 
category:exemplar, part:whole, and place:thing relations tend to form discernible clusters, reflecting their tendency to have constraining 
lexical features. Thus, the lexical model’s ability to capture the relational luring effect (shown in the bottom-right panel of Fig. 6) is 
largely based on high similarity among first words in relationally familiar and intact word pairs. The second words in the pairs did not 
form clusters corresponding to the three relations. 

4.3.2. Simulation results for Experiment 2 
Using the same model-fitting procedure as for Experiment 1, we optimized GCM parameters with the maximum log-likelihood fit to 

the item-level human data for each similarity metric, using a binomial likelihood function. Fig. 5 (above) presents false-alarm rates for 
model-generated P(old| i) predictions using the fitted parameters, as well as human data, for familiar and unfamiliar word pairs, and 
the figure shows that, as in Experiment 1, both relational and lexical similarity predict a higher false alarm rate for familiar than 
unfamiliar word pairs. Moreover, both predict much higher hit rates for intact word pairs than false alarm rates for recombined lures, 
in line with the human data (human: MHit = 0.82, SDHit = 0.22, MFA = 0.16, SDFA = 0.14; relational: MHit = 0.78, MFA = 0.17; lexical: 
MHit = 0.84, MFA = 0.17). 

Experiment 2 used more tightly controlled stimuli than Experiment 1, holding constant word position across study and test pairs 
and counterbalancing which relations contributed to relational familiarity during the memory task across participants. Likely as a 
result, the difference in the human false-alarm rates between relationally familiar and unfamiliar word pairs was much smaller in 
Experiment 2 than in Experiment 1, and both models were able to capture this because both lexical and relational similarity are 
sensitive to word position: Lexical similarity between word pairs is based on similarity computed between words in the same position 
only, and the relation representation entering into relational similarity is sensitive to word position such that the relation represen-
tation for dog:animal is different from that for animal:dog, and the former is more similar to car:vehicle than is the latter. 

Although both models predicted the luring effect in Experiment 2, as well as a smaller effect in Experiment 2 than in Experiment 1, 
the luring effect generated within the relational similarity metric was much more similar in magnitude to the human effect than that 

Fig. 8. Human false-alarm rates and model predictions on the recognition memory task in Experiment 1, broken down according to familiar, 
unfamiliar and unrelated stimulus types. Error bars reflect ±1 SEM. 

Table 5 
Log and luring-specific model evidence for GCM using relational similarity (rel) and lexical similarity (lex) averaged over a wide range of the model 
parameter space (c = [0,50], k = [0.1,1]).   

Elog Eluring  

rel lex rel lex 

Exp. 1 − 1.324 × 104 − 1.569 × 104 2.533 2.355 
Exp. 2 − 6.738 × 103 − 8.131 × 103 3.310 3.291 
Popov et al. Exp. 1 − 2.961 × 103 − 3.614 × 103 3.643 3.631  
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generated within the lexical similarity metric. Moreover, as shown in Fig. 11, this was the case across a wide range of parameters: the 
relational metric robustly produced a human-like luring effect, as shown by the strip of red cells in the left panel, while the lexical 
metric failed to produce luring effects of comparable magnitude at all, as shown by the lack of any bright red cells in the right panel. 
Importantly, because Experiment 2 eliminated the word-position confound in Experiment 1, the increased false alarm rate to rela-
tionally familiar word pairs compared to relationally unfamiliar word pairs in Experiment 2 more unambiguously reflects relational 
luring than does the comparable data from Experiment 1. Thus, the relational model’s unique success in reproducing a luring effect of 
similar magnitude to humans in Experiment 2 provides particularly strong evidence for the importance of relation representations in 
recognition memory. 

In order to quantitatively examine differences between the two models, we used the same analysis of log model evidence as in 
Experiment 1 to account for human data from all 63 test word pairs in Experiment 2. As shown in Table 5, we found greater model 
evidence for the relational model (Elog = − 6.738 × 103) than for the lexical model (Elog = − 8.131 × 103). As for Experiment 1, we went 
also computed influence of parameter variations on model-predicted relational luring effect. Even more than was the case for 
Experiment 1, the relational similarity metric predicted relational luring across a greater range of parameter variations than did the 
lexical metric. Using the same analysis for luring-specific model evidence as in Experiment 1, as Table 5 shows, we found that the 
model evidence for the luring effect observed in our human data (Mluring = 0.0306, SDluring = 0.1174) was greater for the relational 
model (Eluring = 3.310) than for the lexical model (Eluring = 3.291). We acknowledge that while the luring-specific model evidence for 
the relational model is greater than that for the lexical model, the magnitude of this difference is much smaller than that observed in 
Experiment 1. Still, given the large difference in log model evidence between the two models, we maintain that relational similarity 

Fig. 9. Simulation of model-predicted relational luring effect in Experiment 1 as a function of model parameters. Each cell represents a combination 
of values for GCM’s scaling parameter c (y-axis) and its criterion parameter k (x-axis), respectively. Given the pair of parameter values for each cell, 
cell shading represents the model-predicted difference of false alarm rates between familiar word pairs and unfamiliar word pairs (i.e., relational 
luring effect). Darker cells indicate a greater magnitude of model-predicted luring effect. Black cells correspond to the magnitude of the luring effect 
observed in human data. 
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more robustly accounts for human data across a wide range of parameter values. 
Given that the materials used in Experiment 2 involved more relation types and were more well-controlled than those used in 

Experiment 1, it may seem even more puzzling that the lexical model could reproduce the luring effect at all. In order to clarify this 
issue, we compared relational and lexical similarity between word pair items within this dataset. Recall that all test pairs within each 
participant’s 63-item stimulus list belonged to one of 21 stimulus sets. For each set there was a triplet consisting of an intact “old” word 
pair that was shown during the encoding task (e.g., atom:nucleus), and two “new” word pairs not shown during the encoding task. One 
was a relationally familiar word pair that was analogous to the intact word pair (e.g., planet:core) and the other was a relationally 
unfamiliar word pair that was disanalogous to the intact word pair (e.g., bottle:cork). (See Memory Pair column of Table 3 for two 
examples of intact, relationally familiar, and relationally unfamiliar triplets generated from the same stimulus set.) We computed the 
relational and lexical distances between each relationally familiar and each relationally unfamiliar word pair and its corresponding 
intact word pair. Fig. 12 shows the average cosine distances across all such unique triplets used in Experiment 2. While it would be 
expected that the relational distance between familiar and intact word pairs should be much smaller than that between unfamiliar and 
intact word pairs, it is striking that lexical distances yield the same pattern. 

The explanation for the lexical model’s ability to predict relational luring in Experiment 2 is broadly consistent with the expla-
nation for Experiment 1. Words serving the same role in analogous word pairs (e.g., atom and planet; nucleus and core) are more similar 
to each other in Word2vec space than words in disanalogous word pairs (e.g., atom and bottle; nucleus and cork). Indeed, this analysis 
shows that lexical similarity and relational similarity overlap more than might be expected, and that this overlap enabled the lexical 
model to reproduce the seemingly relational phenomenon of relational luring. These findings thus confirm that embeddings produced 
by Word2vec capture important aspects of word meaning related to typical relational roles. 

4.3.3. Simulation results for Popov et al. (2017), Experiment 1 
In order to provide a conceptual replication of the assessment of computational models we applied to our own experiments (as 

reported above), we used the same models to simulate human data reported by Popov et al. (2017) in their original demonstration of 
relational luring. Popov et al. reported human data collected for two different recognition memory tasks. The first task involved 
separate study and test phases and required participants to make binary ‘old’/‘new’ judgments. The second task consisted of a more 
elaborate, continuous memory task, in which participants were presented with a long sequence of word pairs (> 500) and were asked 
to classify each stimulus into three categories based on its relation to word pairs already presented on previous trials in that sequence. 
Because our implementation of GCM (based on Nosofsky, 1986, 1988, 1991; Nosofsky & Zaki, 2003) produces binary responses and 
more naturally fits a design with separate study and test phases, we simulated the data for the first task reported by Popov et al. (2017), 
which was very similar to the present Experiment 2. 

Popov et al.’s (2017) task consisted of three blocked study phases. In each phase, participants were instructed to commit 21 word 
pairs to memory. Following each study phase, participants completed a test phase in which they were presented with a different list of 
21 word pairs, and were asked to provide binary responses indicating whether or not a given word pair was one of those that they had 
studied previously. On each test list, participants were presented with 7 old word pairs that had been shown during the prior study 
phase, and 14 new word pairs each consisting of individual words shown during the study phase, but that were novel in that they 
involved a combination of words different from any presented during the study phase. Of the 14 new word pairs, 7 were relationally 
familiar in that they were relationally similar to one of the studied word pairs (e.g., floor:carpet and table:cloth are relationally similar in 

Fig. 10. Multidimensional scaling based on for lexical similarity among individual first words in pairs used in the memory task for Experiment 1. 
Both colors and shapes redundantly indicate word-pair relations (category:exemplar, part:whole, and place:thing). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. Simulation of model-predicted relational luring effect in Experiment 2 as a function of model parameters (scaling parameter c and its 
criterion parameter k. Shading of cells indicates magnitude of model-predicted luring effect. Black cells correspond to the magnitude of the luring 
effect in human data. 

Fig. 12. Mean lexical and relational cosine distances (scaled between 0 and 1) between familiar and unfamiliar word pairs and intact word pairs 
within each stimulus set used in Experiment 2. 
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that they both prominently instantiate the relation is covered by), and 7 were relationally unfamiliar in that they were not relationally 
similar to any of the studied word pairs. As in the present Experiment 2, the stimuli used by Popov et al. were constructed so that words 
were always placed in the same position in study and test pairs. Popov et al. demonstrated reliable relational luring on this task based 
on participant response times: Participants took longer to correctly classify new relationally familiar than new relational unfamiliar 
word pairs. The frequency with which participants misrecognized new pairs was numerically greater for relationally familiar than 
relationally unfamiliar recombinations, although this difference was not statistically reliable. (Importantly, the comparable pattern 
was reliable in the present Experiment 2.) We aimed to reproduce this trend based on models in the GCM framework, using the two 
similarity metrics, relational and lexical. 

Using the same model-fitting procedure as Experiments 1 and 2, we found the maximum log-likelihood fit of the best parameters for 
each model, using item-level human data. Just as in Experiment 2, since individual word pairs were used in each condition, we treated 
word pair-condition combinations as unique items. Fig. 13 presents false-alarm rates for model-generated P(old| i) predictions using the 
best-fitting model parameters, and human data for familiar and unfamiliar word pairs. Again, using each similarity metric, GCM 
predicts the relational luring effect observed in the human data, as well as the higher hit rates for intact word pairs than false-alarm 
rates for recombined lures (human: MHit = 0.75, SDHit = 0.18, MFA = 0.18, SDFA = 0.13; relational: MHit = 0.72, MFA = 0.17; lexical: 
MHit = 0.72, MFA = 0.19). Similar to Experiment 2, but to a lesser extent, the luring effect generated using the relational similarity 
metric was closer in magnitude to the human effect than that generated using the lexical similarity metric. As was the case for 
Experiment 2, Popov et al. (2017) used materials that afforded more experimental control over the key manipulation of relational 
familiarity than those used in Experiment 1. The relational model’s advantage in producing a more human-like luring effect in the 
present simulations thus strongly supports the importance of relation representations in accounting for human recognition memory. 

An analysis of Popov et al.’s stimulus triplets (i.e., intact, relationally familiar, and relationally unfamiliar word pairs drawn from the 
same stimulus set) produced the same pattern of results as the corresponding analysis of Experiment 2’s materials: Both the lexical and 
relational models yielded greater distances between intact and unfamiliar word pairs than between intact and familiar word pairs. The 
lexical model’s ability to reproduce relational luring again stemmed from its partial success in capturing aspects of word meaning that 
track relational roles. 

In the same manner as described for the robustness analyses applied to data from our own experiments, we computed log model 
evidence for all 63 test items. Log model evidence was greater using relational similarity (Elog = − 2.961 × 103) than lexical similarity 
(Elog = − 3.614 × 103). We then examined the space of parameters for which relational and lexical similarity yielded relational luring 
within GCM for the data from Popov et al. (2017). Replicating the pattern of luring-specific model evidence for our own data in 
Experiments 1 and 2, we found that for the relational luring effect observed in Popov et al.’s (2017) data (Mluring = 0.0225, SDluring =

0.1078), relational similarity yielded greater model evidence (Eluring = 3.643) than did lexical similarity (Eluring = 3.631) across a wide 
range of the parameter space. Fig. 14 depicts the luring effects produced by each similarity metric. As with Experiment 2, while the 
relational model showed only a slight advantage over the lexical model in luring-specific model evidence, it showed a substantial 
advantage over the lexical model in log model evidence. Thus for three datasets, relational similarity consistently produced a better 
account of the human data than lexical similarity across a wide range of model parameters. 

Note the magnitudes of the fitted parameter values varied (even between Experiment 2 and the study by Popov et al., despite their 
use of very similar materials). These variations presumably are due to methodological differences, such as different encoding tasks 
(relatedness judgments in Experiment 2 vs. deliberate study in Popov et al.), number of task blocks (1 in Experiment 2 vs. 3 in Popov 
et al.), and task language (English in Experiment 2 vs. Bulgarian in Popov et al.). 

Fig. 13. Human false-alarm rates from Popov et al. (2017), Experiment 1, and model predictions on the recognition memory task, broken down 
according to stimulus type. Error bars reflect ±1 SEM. 
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5. General discussion 

5.1. Summary 

We report two experiments and simulations designed to compare alternative representations of word-pair similarity as predictors of 
both human analogical reasoning and recognition memory. We compared two computational models (both grounded in semantic 
vectors for individual words created by Word2vec; Mikolov et al., 2013) for defining the similarity between word pairs. One model was 
based on explicit relations between words, the other on lexical overlap between word meanings. The model based on explicit relations 
(BART; Lu et al., 2019) clearly provided the best account of human performance on an analogy task, in accord with previous work (e.g., 
Chiang et al., 2021; Ichien, Lu and Holyoak, 2022). 

In our test of recognition memory, we replicated the phenomenon of relational luring reported by Popov et al. (2017): greater false 
recognition of word pairs formed by recombining studied words to form a novel instantiation of a familiar relation, as compared to 
recombinations that form an unfamiliar (i.e., unstudied) relation. We obtained the same basic pattern of false alarms using two 
different encoding tasks: judging whether a discernible semantic relation holds between two words in the relatedness task (Experi-
ments 1 and 2), or judging whether two word pairs constitute a valid analogy in a verbal analogy task (Experiment 1). The fact that 
relation recognition yielded as much luring as an explicit analogy task is a surprising finding, as it seemed plausible that the former task 
would require less detailed processing of the relation. It is possible that participants paid close attention to the relation during both 
tasks because they expected a later memory test (as was also the case in the study by Popov et al., 2017). Alternatively, it may be that 
even relatively superficial relation processing is sufficient to produce the luring phenomenon. Future work will be needed to clearly 
disentangle the relative contributions of different encoding tasks to false recognition memory based on relations. 

Fig. 14. Simulation of model-predicted relational luring effect as a function of model parameters (scaling parameter c and its criterion parameter k) 
for Popov et al. (2017), Experiment 1. Shading of cells indicates magnitude of model-predicted luring effect. Black cells correspond to the magnitude 
of the luring effect in human data. 
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To assess the basis for relational luring using computational modeling, we tested the two similarity measures within a common 
theoretical framework provided by the Generalized Context Model (GCM; Nosofsky, 1986, 1988, 1991; Nosofsky & Zaki, 2003), a well- 
established instance-based model of item recognition. These computational analyses, which were applied to both experiments reported 
here as well as an experiment from Popov et al. (2017), yielded a nuanced interpretation. Relational similarity proved to be more 
accurate than lexical similarity in clustering word pairs instantiating different categories of semantic relations, but lexical similarity 
also was somewhat predictive (Fig. 6). For all three datasets, when each model variant was fit using the optimal choice of values for the 
two parameters specified in GCM, the human pattern of relational luring could be predicted equally accurately using either relational 
or lexical similarity. Strikingly, our modeling results indicate that explicitly representing relations is not necessary for explaining 
relational luring. 

However, we also performed additional analyses to assess the robustness of each similarity measure to variations in GCM’s two 
model parameters: scaling parameter c and criterion parameter k. We first examined the space of parameters in the GCM model that 
predict item-level deviation between model predictions and human responses (using all data); and also the parameter space that 
specifically predicts the human luring effect. We computed the log model evidence to provide a quantitative comparison of the 
robustness to predicting all human data with each similarity metric. In addition, we computed luring-specific model evidence to 
quantitatively compare each similarity metric’s ability to predict the human-generated luring effect. Both types of analyses were 
performed for data from Experiments 1–2 in the present paper and for Experiment 1 reported by Popov et al. (2017). For both analyses, 
across all three datasets, model evidence was greater for the relational similarity metric than for the lexical metric. In particular, the 
relational measure predicted the pattern of human data across a range of higher values of the GCM parameter c, which is typically 
interpreted as an index of sensitivity to differences among the instances stored in memory. Given the substantial procedural differences 
among the datasets that we modeled, the comparable findings from these analyses are particularly striking. 

The greater robustness of the relational measure is consistent with the fact that this measure differentiated the abstract relation 
categories more accurately than did the lexical measure. In an explicit verbal analogy task in the A:B::C:D format, validity depends on 
the precise similarity of the A:B and C:D relations. Only relational similarity provides adequate precision to reliably compute validity. 
But in the recognition memory task, the instance-based GCM effectively computes similarity of any test pair to the entire pool of 
studied pairs. The GCM framework implies that the probability of incorrectly accepting a relational lure depends on its perceived 
similarity to an aggregate of all studied instances of that relation. If an agent is generally insensitive to subtle distinctions among 
individual word pairs, a coarse measure based on lexical similarity will suffice to yield greater false alarms to familiar than unfamiliar 
test pairs. But if the agent is instead highly sensitive to semantic distinctions among word pairs, only the more precise measure 
provided by relational similarity will predict a difference. 

5.2. Conclusion 

We conclude that by the preponderance of evidence (in particular, the greater robustness of the GCM model based on relational 
similarity), it is more probable that recognition memory for word pairs (like analogical reasoning) is based on explicit representations 
of relations between words, rather than on direct lexical similarity of individual words that form pairs. However, even if this (tentative) 
conclusion proves to be correct, it would not imply that lexical similarity is irrelevant to recognition. In fact, a basic requirement for 
obtaining relation-based false alarms is that the lure must be composed of words that were in fact shown in the study phase (in different 
combinations). That is, few false alarms would be expected if a test pair instantiated a familiar relation, but was composed of unstudied 
words. Moreover, even complex analogical reasoning by humans appears to be guided by lexical similarity of words in addition to 
similarity of explicit relations between words (Lu et al., 2022). It appears that a complete account of both reasoning and episodic 
memory will require integration of multiple types of similarity. 
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