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Abstract 

Both humans and deep learning models can recognize objects 
from 3D shapes depicted with sparse visual information, such 
as a set of points randomly sampled from the surfaces of 3D 
objects (termed a point cloud). Although deep learning models 
achieve human-like performance in recognizing objects from 
3D shapes, it remains unclear whether these models develop 
3D shape representations similar to those used by human vision 
for object recognition. We hypothesize that training with 3D 
shapes enables models to form representations of local 
geometric structures in 3D shapes. However, their 
representations of global 3D object shapes may be limited. We 
conducted two human experiments systematically 
manipulating point density and object orientation (Experiment 
1), and local geometric structure (Experiment 2). Humans 
consistently performed well across all experimental 
conditions. We compared two types of deep learning models, 
one based on a convolutional neural network (DGCNN) and 
the other on visual transformers (point transformer), with 
human performance. We found that the point transformer 
model provided a better account of human performance than 
the convolution-based model. The advantage mainly results 
from the mechanism in the point transformer model that 
supports hierarchical abstraction of 3D shapes.   

Keywords: 3D Object Recognition; Point Cloud Analysis; 
Deep Learning Models; Human Visual Perception; Shape 
Representations 

Introduction 
Objects in the natural world are three-dimensional and 
possess physical properties such as geometric shape, 
material, and volume. From a brief glance, the human visual 
system excels in extracting visual attributes from pixel-level 
information in images to infer these object properties. Among 
the object properties, recognizing the three-dimensional 
shape of objects is considered fundamental for most daily life 
tasks involving navigation and interaction with the external 
world. Humans utilize depth cues and spatial relationships to 
understand and identify objects. Considerable research 
(Wallach & O’Connell, 1953; Marr, 1982; Liu, 1998) 
indicate that humans construct mental representations of 
objects that incorporate 3D structural information, 
facilitating recognition from different perspectives. Human 

3D object recognition is both accurate and remarkably robust. 
A key example of this robustness is the ability to perceive and 
interpret 3D objects even with limited information, such as 
point cloud displays that are sparsely sampled along object 
surfaces (Treue, Husain, & Andersen, 1991; Treue, et al., 
1995; Murray, Olshausen, & Woods, 2003; Wagemans, et al., 
2012; Guo et al., 2020). Such high accuracy and robustness 
of human vision system appears particularly tuned to 3D 
object recognition. Previous research shows that 3D shape 
perception arises early in human infancy (Kellman, 1984), 
and that human toddlers begin to develop a strong shape bias 
between 18 and 24 months, shifting from an early reliance on 
texture and other perceptual features to generalizing object 
names based on shape as their vocabulary expands (Yee, 
Jones, & Smith, 2012). While sensitivity to texture evolves, 
it is secondary compared to shape-based object recognition.  

These empirical evidence in human development is in 
contrast with the default strategies used in deep convolutional 
neural networks (DCNN) (Krizhevsky et al., 2012; Simonyan 
and Zisserman, 2014; He et al., 2015). Baker et al. (2018) 
found that DCNNs struggled to classify objects in images 
based on their global shape. In one experiment, they 
presented CNNs with object that preserved the global shape 
but were filled with textures from other objects. The networks 
showed a strong bias for classifying based on textures rather 
than shapes. Further experiments revealed that CNNs could 
not reliably classify objects based on outlines alone, 
indicating a reliance on local features rather than global 
shapes. These findings suggest that while CNNs can access 
local shape features in images, they do not form global shape 
representations crucial for human-like object recognition.  

While the challenges of object recognition in 2D images 
are well-documented, the transition to 3D object recognition 
in the point cloud display introduces additional complexities 
and opportunities for both human and machine perception 
research. Recent advancements in deep learning have led to 
novel architectures designed specifically for 3D point clouds. 
PointNet, for example, introduced innovative ways to 
directly process point clouds by learning spatial features from 
raw 3D data (Qi et al., 2017a). Another significant 
development is Dynamic Graph CNN (DGCNN), which 
builds on the idea of graph neural networks to construct local 
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neighborhoods and learn local geometric features 
dynamically (Wang et al., 2019). These models have shown 
human-like performance in various 3D recognition tasks, but 
whether they acquire 3D representations similar to humans 
remains unknown. The most recent advancement is to adopt 
the visual transformer architecture in 3D object recognition, 
such as the Point Transformer (Zhao et al., 2021). These 
transformer-based models also reach human-level 
recognition performance for 3d object recognition. 

In this paper, we aim to compare the 3D object recognition 
in humans and deep learning models. Through a set of 
experimental manipulations, we analyze how both humans 
and models recognize 3D objects, particularly in challenging 
conditions where local features are disrupted or the objects 
are presented from unusual perspectives. We then conducted 
ablation studies to pin down the core computational 
mechanisms underlying 3D object recognition. 

 

 
Figure 1. The architectures of DGCNN (top) and Point 
Transformer (bottom). MLP: Multi-layer perception, 
consisting of multiple fully connected layers. ⊕: 
concatenation. 

Modeling Methods 

Dataset 
We used stimuli selected from the publicly available point 
cloud dataset, ModelNet40 dataset (Wu et al., 2015). The 
ModelNet40 dataset includes a set of 3D CAD models from 
40 object categories. There are 12,311 3D CAD objects in 
total in the ModelNet40 dataset, where 9,843 objects are used 
for training, and 2,468 objects are used for testing. The point 
clouds consist of 1,024 points sampled uniformly from the 
surface of the 3D CAD models.  

Deep Learning Models 
We evaluated two deep learning models for 3D object 
recognition from point cloud data: a convolution-based 
model (DGCNN; Wang et al., 2019) and a transformer-based 
model (Point Transformer; Zhao et al., 2021). Both models 
take 3D coordinates of points sampled from an object and 
generate a feature embedding for object classification. 

DGCNN processes point clouds as graphs using EdgeConv 
layers, which extract local geometric features by comparing 
each point to its neighbors in feature space. Unlike traditional 
CNNs that operate on regular grids, DGCNN dynamically 

updates the neighborhood structure in each layer, enabling it 
to capture complex 3D shapes through local feature 
aggregation and global max pooling. Our implementation 
used 1024 points and 20 nearest neighbors, based on the 
publicly available pretrained model. 

Point Transformer adopts a self-attention mechanism 
inspired by transformer architectures in NLP and vision. Each 
Point Transformer layer integrates information from 
neighboring points using attention weights based on spatial 
and feature similarity. Transition Down layers perform 
hierarchical downsampling, enabling the model to capture 
both local and global shape features. This design allows for 
adaptive focus on informative regions of the input, enhancing 
recognition performance. 

While both models operate on point cloud inputs, DGCNN 
emphasizes local geometric structure, whereas Point 
Transformer combines hierarchical pooling and attention to 
capture context-dependent relationships. To align with 
human experiments, we trained both models on the 
ModelNet40 dataset and extracted logits corresponding to the 
ten object categories shown to participants, enabling a direct 
comparison of recognition performance. Both models were 
trained using the same data augmentation procedures, 
including random point dropout, random scaling, and random 
shifting of the input point clouds. 

 

DGCNN Point transformer 

Feature embeddings of a 
reference point are modulated 

by adding the weighted 
feature differences from the 

neighbor points 

Feature embeddings of a 
reference point are computed 
using feature embeddings of 
neighbor points weighted by 

similarity 

Neighbor points are defined in 
feature space, changing from 

layer to layer 

Neighbor points are defined 
based on distance in 3D space 

No spatial resolution change Downsampling: spatial 
resolution change from fine to 

coarse 

No position (3D coordinates) 
encoding  

Position encoding added to 
each layer 

Table 1. Comparison and key differences between a 
convolution-based model (DGCNN) and transformer-based 
model (Point transformer). 

Experiments 

General Human Study Procedure 
We use the same general procedure across all experiments 
unless otherwise specified. 
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Participants were instructed that they would view a rotating 
point cloud object during each trial. The stimulus was 
displayed for 3 seconds, after which ten buttons, each labeled 
with a different object name, appeared for selection. Their 
task was to select the object category that best matched the 
presented point cloud object. The ten object categories were 
airplane, bottle, bowl, chair, cup, lamp, person, piano, stool, 
and table. 

Participants first completed a practice trial showing a 
rotating point cloud of a plant. They had to select the correct 
object category before proceeding to the experimental trials. 
If participants selected a wrong object category during 
practice, then the trial was repeated, and a hint message was 
displayed below the ten category buttons, directing 
participants to select the "Plant" button. This practice trial 
aimed to familiarize participants with the point-cloud display 
and ensure they understood the recognition task. The object 
category in the practice trial was not included in the 
subsequent experimental trials. 

The experimental trials were similar to the practice trial, 
except that no feedback was provided. At the end of the 
experiment, demographic information was collected, and 
participants were presented with debriefing information 
about the study. 
 

 
Figure 2. Downsampled and inverted point cloud stimuli used 
in Experiment. A random subset of points from the point 
cloud is retained in varying proportions. Colors represent 
depth, with red indicating proximity and blue indicating 
distance. In the actual experiments, the stimuli were 
presented as black points with rotation in depth, viewed from 
a horizontal viewpoint. 

Experiment 1: Point Density and Object 
Orientation 
In the first experiment, we investigated the recognition 
performance of both human participants and neural network 
models under two conditions: (1) varying point cloud sparsity 
and (2) presentation of point clouds in an inverted (upside-
down) orientation. By combining these two conditions, we 
examined the robustness of human and model recognition 
across different levels of detail and atypical viewpoints. 

 
Participants Two groups of participants were recruited 
through the UCLA Subject Pool. For the sparse point cloud 
condition, 56 participants were recruited (45 female, 11 
male), with one participant excluded for reporting a lack of 
seriousness, resulting in a final sample of 55 participants 

(mean age = 19.8, SD = 1.4). For the inverted point cloud 
condition, 47 participants were recruited (40 female, 7 male), 
with a mean age of 20.4 years (SD = 1.5). The average 
completion time for both conditions was approximately 10 
minutes, with a slight variance between groups. 
 
Stimuli The stimuli were selected from the test set of the 
ModelNet40 dataset to ensure a fair comparison between 
human participants and deep neural network (DNN) models. 
We selected 7 objects from each of the ten categories, where 
each stimuli was transformed under two conditions 1) sparse 
point clouds: each point cloud were randomly downsampled 
to seven proportions (20%, 30%, 40%, 50%, 60%, 80%, and 
100% of 1024 points). 2) Inverted point clouds: each stimulus 
from condition 1 were flipped upside down. Therefore, we 
have 7 objects x 7 downsampling ratios x 10 categories = 490 
stimuli for the upright condition and the inverted condition. 
Each point cloud was presented as a GIF rotating 10 degrees 
per frame around the vertical axis. The GIF is displayed at 10 
frames per second, completing a full 360-degree rotation in 
3.6 seconds. 

In the experiment, the participants are split into two groups, 
where one group viewed the upright point clouds and the 
other viewed the inverted point clouds. Each participant 
viewed one object exemplar only once, with a random 
permutation of proportions. In other words, each participant 
viewed all seven objects from one category, and each object 
was displayed in the point cloud format with a different 
downsampling proportion. This resulted in a total of 70 trials 
per participant. The trials were randomized for each 
participant. For the models, we used all 490 objects x 2 
conditions = 980 objects for testing. 
 
Results The results of the experiment are presented in Figure 
3. Despite the sparse information provided in point cloud 
display, human participants consistently demonstrated high 
accuracy across all levels of point density. Their performance 
ranged from 86.2% to 95.3%, with only a slight decline as the 
point density decreased. For instance, when the point clouds 
were downsampled to 20% of the original points, the mean 
accuracy was 86.4% (CI = [83.5%, 89.2%]), and at 30%, the 
mean accuracy was 88.9% (CI = [86.3%, 91.5%]). This 
suggests that human participants are highly resilient to 
reduced point density, maintaining reliable recognition 
performance even with sparsely represented 3D objects. 

The performance of the DGCNN model, however, was 
markedly affected by the reduction in point density. While 
the model’s accuracy approached human performance at 
higher point densities (above 30%), it declined sharply at 
lower proportions. Specifically, the accuracy dropped to 
64.3% at 30% point density and 48.6% at 20%. In contrast, 
the Point Transformer model exhibited greater robustness to 
sparsity. Its accuracy remained high across all levels of point 
density, ranging from 94.3% at 50% to 87.1% at 20%, 
showing similar performance robustness as humans. 

In the inverted condition, human participants showed the 
inversion effect with lower accuracy than upright condition, 
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but still significantly greater than the chance level. 
Furthermore, humans consistently outperformed the machine 
learning models, highlighting their adaptability to changes in 
perspective. Note that the Point Transformer model 
performed better than the DGCNN model overall and also 
showed less reduction in the inverted condition, particularly 
at lower point densities.  

 

 

 
Figure 3. Accuracy of human participants and models as a 
function of point density for upright point clouds (top) and 
inverted point clouds (bottom). Error bars represent the 95% 
confidence interval. 

Experiment 2: Lego-Like Point Clouds 
In Experiment 2, we aimed to disrupt the local geometric 
features of point clouds while preserving their global shape 
of 3D objects. This was achieved by converting point clouds 
into voxel grid displays, analogous to reducing the resolution 
of an image. The larger the voxel size, the lower the spatial 
resolution of the point cloud. The process involved 
generating a voxel grid from the point cloud, sampling points 
on the voxel surfaces, and normalizing the sampled points. 
The stimuli section below details the methodology and the 
corresponding implementation. 

The idea of introducing Lego-like point clouds was 
inspired by the sawtooth images from Baker et al. (2018), 
where sawtooth effects were added to silhouette images to 
disrupt local contour features. In our 3D point cloud display, 
we similarly aimed to disrupt local curvature features by 
converting point clouds into Lego-like representations while 
keeping the global shape almost unchanged. 
 
Participants A total of 60 participants were recruited 
through the university's Subject Pool. The sample comprised 
49 females, 9 males, 1 non-binary individual, and 1 
participant who preferred not to disclose their gender. The 
mean age of the participants was 20.6 years (SD = 3.9). The 
average completion time for the experiment was 6.3 minutes 
(SD = 2.3). 
 
Stimuli We first converted each point cloud into a voxel grid 
representation using the Open3D library. A point cloud 
consists of discrete data points capturing an object's surface 
geometry, while voxels are small cubic units dividing 3D 
space into a regular grid, analogous to pixels in 2D images 

but extending into the third dimension. To convert a point 
cloud into a voxel grid, we superimposed a voxel grid over 
the point cloud, determine voxel occupancy by checking 
which voxels contain points, and then created a structured, 
blocky representation of the object. 
 

 
Figure 4. Lego-like Point Cloud Stimuli for Experiment 2. 
Points were uniformly sampled from voxel surfaces 
converted from point clouds, with varying voxel sizes 
determining resolution. 
 

After obtaining the voxel grid representation of the point 
clouds, we sampled points uniformly on the surface of this 
grid. These sampled points were aggregated to form a new 
point cloud representing the voxel grid. Varying the voxel 
size allowed us to sample the point cloud at different 
resolutions, with larger voxel sizes resulting in lower 
resolution. 

The resulting point cloud from the voxel sampling was then 
normalized to center it at the origin and scale it to fit within a 
unit sphere. This normalization does not affect the GIFs 
presented to human participants but is crucial for ensuring 
consistent input for machine learning models. 

For the stimuli, we used the same 70 objects from 10 
categories as in Experiment 1. Each object was sampled with 
four different voxel sizes: 0.01, 0.05, 0.1, and 0.2. Each 
participant viewed four random but non-overlapping objects 
from each voxel size within each category, constituting a total 
of 40 stimuli per participant. 
 

 
Figure 5. Accuracy of human participants and models on 
Lego-like point clouds with varying voxel sizes. Error bars 
represent the 95% confidence interval. 
 
Results The results of Experiment 2 are depicted in Figure 5. 
Human participants demonstrated relatively stable accuracy 
across different voxel sizes. Human performance remained 
almost the same when voxel size increased from 0.0 (mean 
accuracy 93.8%, CI = [91.8%, 95.8%]) to 0.05 (mean 
accuracy 91.8%, CI = [89.5%, 94.1%]). Then accuracy 
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gradually reduced as the voxel size increased to 0.1 (mean 
accuracy 84.3%, CI = [81.3%, 87.3%]) and 0.2 (mean 
accuracy 66.8%, CI = [62.9%, 70.7%]). This suggests that 
human participants can effectively recognize objects even 
when local geometric features are jittered, provided the 
global shape remains intact.                                                  

Both models achieved performance levels comparable to 
human observers at lower voxel sizes, suggesting their ability 
to generalize well with minimal distortion. However, as voxel 
size increased, performance began to decline across all 
groups. Notably, the Point Transformer exhibited a gradual 
decline in accuracy that closely mirrored the human trend, 
suggesting that it captures a similar sensitivity to degradation 
in spatial resolution. In contrast, DGCNN maintained stable 
performance up to voxel size 0.1 but showed a sharp drop at 
0.2, indicating a threshold-like effect leading to brittle 
performance. Specifically, DGCNN's accuracy dropped from 
95.71% at voxel size 0.1 to 74.29% at voxel size 0.2. 

We further analyzed the correlation between model and 
human accuracy patterns across all experimental conditions, 
in the next section titled “Model and Human Performance 
Correlation” (also see Figure 8). This section provides a more 
detailed quantitative comparison of model alignment with 
human behavior across the two experiments. 

Investigating Mechanisms Underlying Global 
Shape Bias 
To identify which computational mechanism in the Point 
Transformer model contribute to its global shape bias, we 
systematically evaluated three primary differences between 
the Point Transformer and the DGCNN: (1) the Attention 
mechanism, (2) Position Encoding, and (3) the 
Downsampling supporting hierarchical pooling and 
abstraction of 3D shapes. By selectively removing each 
component, we developed multiple variants of the Point 
Transformer and assessed their performance on the same 
downsampled point cloud stimuli used in Experiment 1. 

Figure 6 illustrates the accuracy of different Point 
Transformer variants as a function of point density, stimuli 
used in Experiment 1. The original Point Transformer model, 
the “Original” variant in the plot, achieves the highest 
performance across all proportions. The “NoAttn” and 
“NoPE” variants, which removes the attention mechanism 
and the position encoding mechanism respectively, 
experiences a mild accuracy drop compared to the original. 
This suggests that while attention and position encoding are 
beneficial, the model maintains substantial effectiveness 
even in their absence. 

In contrast, the variant lacking the downsampling 
mechanism ("NoDS") demonstrated performance 
comparable to the original model at higher point densities but 
exhibited significant accuracy declines at lower point 
densities. This result underscores the critical role of the 
downsampling component in generalizing across varying 
degrees of point sparsity. Downsampling facilitates 
hierarchical representation within the model, enabling a 

global integration of shape information and reducing 
dependence on local features.  

Interestingly, this effect mirrors the visual pathways in the 
human brain, particularly the hierarchical processing in 
ventral pathway, indicated by increased receptive fields of 
neurons from the low-level to high-level visual areas. 
Similarly, downsampling in Point Transformer enforces a 
global shape bias, helping the model recognize objects even 
when the number of available points is significantly reduced. 
By progressively reducing the number of points covering the 
entire objects, downsampling allows the model to integrate 
local features into a coherent global representation, making it 
more robust to various data transformations. 
 

 
Figure 6. Accuracy of variants of Point Transformers on 
downsampled point clouds. Original = the original Point 
Transformer, NoAttn = No attention, NoPE = No position 
encoding, NoDs = No downsampling. 

Enhancing DGCNN with Downsampling 
Given the critical role identified for the downsampling 
mechanism in fostering a global shape bias in the point 
transformer model, we next examined whether integrating 
this computational mechanism into the DGCNN architecture 
could enhance its performance. We introduced the Transition 
Down layer from the Point Transformer into each EdgeConv 
layer of the DGCNN, matching the structural depth of the 
original Point Transformer. 

As demonstrated in Figure 7, incorporating the Transition 
Down layer significantly improved the DGCNN’s robustness 
to point density. The original DGCNN exhibited significant 
performance degradation at point densities less than 40% . In 
contrast, the modified DGCNN with the Transition Down 
layer ("DGCNN + DS") increased the the accuracy for the 
low point density condition. For example, performance 
increased from 0.486 to 0.829 for the 20% point density, 
aligning closely with both human performance and the 
original Point Transformer. 

The addition of the Transition Down layer effectively 
compels the model to construct more abstract, hierarchical 
representations of 3D objects, shifting its focus towards 
global shape characteristics rather than relying excessively 
on detailed local features. Crucially, this demonstrates that 
downsampling can effectively bridge the gap between 
seemingly distinct model architectures, transformer-based 
and convolution-based, highlighting a shared computational 
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mechanism toward robust shape recognition. While it is 
commonly assumed that the attention mechanism in 
transformer-based architectures primarily enables better 
generalization, our results clearly demonstrate that it is 
actually the downsampling mechanism driving this effect. 
The success of downsampling across both transformer and 
convolution-based models challenges conventional 
assumptions about their inherent differences, suggesting that 
hierarchical abstraction strategies may universally benefit 
deep learning models.  

 

 
Figure 7. Accuracy of variants of DGCNN model on 
downsampled point clouds. DGCNN + DS = DGCNN model 
with additional Downsampling layer after each EdgeConv 
layer. 

Model and Human Performance Correlation  
We compared the accuracy patterns of the DGCNN and Point 
Transformer, along with their respective variants, DGCNN + 
DS and Point Transformer noDS, to human accuracy patterns 
across experimental conditions in the two experiments. By 
pooling performance data across all tested conditions, we 
computed Pearson correlations between each model's 
accuracies and human responses.  

As shown in Figure 8, both model variants that incorporate 
the downsampling mechanism (DGCNN + DS and Point 
Transformer) exhibited substantially higher correlations with 
human performance than their non-downsampling 
counterparts (DGCNN and Point Transformer noDS). 
Specifically, the correlation between human performance and 
DGCNN + DS was r = 0.721 (p <0 .001), and for the original 
Point Transformer it was r = 0.711 (p < 0.001), both 
significantly higher than the correlation with the original 
DGCNN (r = 0.545, p = 0.016). These differences were 
statistically supported by comparisons such as DGCNN vs. 
DGCNN + DS (z = -15.570, p < 0.0001) and DGCNN vs. 
Point Transformer (z = -8.163, p < 0.0001), indicating that 
the introduction of downsampling yields not only improved 
model robustness but also closer alignment to human 
accuracy profiles.  

This finding provides converging evidence that 
downsampling plays a central role in eliciting human-like 
recognition of 3D shapes. The enhanced human-model 
correspondence across two structurally distinct architectures 
further underscores the broad applicability of this mechanism.  

 
Figure 8. Correlation between model and human accuracy 
patterns across conditions. Models with downsampling show 
significantly stronger alignment with human. 

 

Conclusions and Discussions 
Across two behavioral experiments and a series of modeling 
analyses, we demonstrated that humans exhibit strong 
robustness in recognizing 3D objects, even under challenging 
conditions such as sparse input, inversion, or disrupted local 
geometry. While current deep learning models—DGCNN 
and Point Transformer—achieved comparable accuracy to 
humans under standard conditions, their robustness under 
distortion varied substantially. 

In particular, the Point Transformer model consistently 
mirrored human performance trends, showing gradual 
declines under increasing point sparsity and local geometry 
disruption. In contrast, the DGCNN model was more brittle, 
with sharp drops in performance in the untrained conditions. 
These findings indicate that models relying predominantly on 
local geometric features, such as DGCNN, lack the holistic 
processing strategies characteristic of human perception. 

Our ablation studies further revealed that the 
downsampling mechanism in Point Transformer is the key 
component supporting its robustness and global shape bias in 
3D object recognition. By introducing this mechanism into 
DGCNN, we significantly improved its performance and 
alignment with human responses. Importantly, our findings 
challenge the common assumption that attention mechanisms 
are the main contributors to strong generalization in 
transformer-based models; instead, hierarchical abstraction 
through downsampling plays the more critical role for 3D 
shape recognition. 

Taken together, our results highlight the importance of 
global shape representations in achieving human-like 3D 
object recognition. Integrating cognitively inspired 
mechanisms, such as hierarchical downsampling, into deep 
learning models can improve their generalization and 
robustness, bringing them closer to the perceptual strategies 
employed by the human visual system. 
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