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Hongjing Lu Emily D. Grossman
Department of Psychology Department of Cognitive Sciences
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Abstract
When given the opportunity, humans naturally engage in an-
thropomorphism, which may reflect a bias to engage in men-
talistic attributions in understanding social interactions. In this
experiment, we evaluate whether neural activity in social per-
ceptual brain regions can be explained by perceptual cues of
agency and interactivity, or by semantic models of written de-
scriptions of Heider-Simmel style animations. Models were
compared in representational similarity space using variance
partitioning of the neural response from the STS, TPJ, and
PCC. The right STS and TPJ were best explained by percep-
tual models of distance between the agents, an indicator of in-
teractivity, and separately by the similarity structure of the free
responses, which captured both action and interaction terms.
Together, these results implicate the importance of contextual
framing, either through perceptual features of interactivity or
social context as implied by the nature of interactions, as defin-
ing features in neural representations of interactivity.
Keywords: social cognition; theory of mind; language mod-
els; fMRI

Introduction
Humans may spontaneously attribute social characteristics
to moving objects around them, even when the objects lack
explicit features that convey animacy such as eyes or body
limbs. In the original Heider & Simmel (1944) report, par-
ticipants described animated shapes as autonomous agents
when instructed to simply ”write down what happened in
the picture.” Since that discovery numerous studies have
followed, investigating various types of attributions made
when viewing these animations and the extent to which
this may reveal tendencies to engage the cognitive pro-
cess of theory of mind (see Schultz & Frith (2022) and
Torabian & Grossman (2023) for a comprehensive review).
Abell et al. (2000) showed that typical observers com-
monly use mentalistic terms when viewing Heider-Simmel
type animations that make reference to the mental states of
the actors, whereas simple interactions garner descriptions
weighted with terms describing directly observable action
states. Likewise, observers are also able to draw inferences
as to the emotional state of the actors as conveyed by the
animated shapes (Moessnang et al., 2017). Thus, the na-
ture of language used by the observer when describing the
events and mental states of the geometric actors reflects,
in part, the depth of mentalistic processes engaged by the
viewer.
In Heider-Simmel animations, object trajectories serve as
a cue for goal-directed action while relative position cues

may signal interactivity, and emotional states must be in-
ferred through a complex interplay of the two. Thus, a
number of studies have evaluated the kinds of percep-
tual cues that convey interactivity, and in what cases hu-
mans take a deep mentalistic stance versus using functional
descriptions more consistent with a teleological stance
(Gergely & Csibra, 2003). As evidence in favor of the po-
tency of perceptual cues, studies have noted distinct differ-
ences in the movement patterns of animations that depict
intentional vs. simple goal-directed movements (Roux et
al., 2013). Eye-tracking studies have further shown that an-
imations conveying mentalistic interactions require deeper
processing as evident by longer fixations as compared to
goal-directed animations or random movement (Klein et
al., 2009). Moreover, computational work successfully pre-
dicted human performance for a variety of actions (e.g.,
push, tickle, argue, flirt) with models solely based on fea-
tures derived from motion trajectories (i.e., rotation and
relative distance; Roemmele et al. (2016)). Likewise, Shu
et al. (2018) created a model that was able to discriminate
interactive vs. independent actions from de-contextualized
aerial videos of human movements in an open space (with
the humans replaced by shapes) based on the characters’
motion trajectories alone and without the need for high-
level reasoning. Movement trajectories may also combine
with relational visual representations (the distance between
shapes that appear as agents), which recent modeling work
shows could better explain human judgments on the na-
ture of Heider-Simmel interactions (adversarial, neutral, or
friendly) as compared to a model with explicit information
about the social and physical world (Malik & Isik, 2023).

In contrast, at least one other study has demonstrated the
benefit of cognitive contextual information in modeling hu-
man judgments. Ullman et al. (2009) showed observers an-
imations with one agent that moved towards one of two
object goals and another agent that either helped the first
agent or hindered it. The authors found a model that in-
ferred social goals to be a better fit to human judgments
as compared to a perceptual distance-based model. Impor-
tantly, the goals of the agents were not directly observable
by humans or the models, suggesting that attributions were
made by drawing inferences at the mentalistic level. These
results indicate a potential advantage of engaging theory
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of mind processes, against the potential cost of additional
cognitive load. The extent to which observers are willing
to engage that load is not entirely clear, but recent findings
from Tarhan et al. (2021) showed that observers intuitively
arrange videos of interaction as more similar when they
convey similar goals, rather than based on visual or action-
based similarities. Taken together, the above studies illus-
trate the challenges in evaluating how and at what level of
complexity humans recognize actions and interactions.

Brain imaging studies have revealed a network of regions
in the social cognitive brain network and the lateral tempo-
ral pathway (Pitcher & Ungerleider, 2021) to be engaged
when making goal-directed and mentalistic attributions to
these simple animations (Castelli et al., 2000; Martin &
Weisberg, 2003). In a recent fMRI study with naturalistic
viewing of everyday actions of two humans, McMahon et
al. (2023) found a hierarchy of increasing complexity in
the representations of action recognition along the lateral
visual pathway. Whereas early visual cortex (EVC) and
the middle temporal area (MT) have neural representations
well described by low-level visual features (for example, as
captured by a motion energy model), the extrastriate body
area (EBA) and the lateral occipital cortex (LOC) are better
described by features such as scenes and objects, and the
superior temporal sulcus (STS) is best explained by fea-
tures consistent with social interactions and communica-
tion. As shown by Tavares et al. (2008), it is these higher-
level areas that are more strongly modulated by the goals of
the observers, illustrated by changing the attentional cue.
When observers were cued to attend to the social nature of
the interactions between the shapes, neural activity in the
STS and adjacent temporoparietal junction (TPJ), poste-
rior cingulate (PCC), and other social cognitive regions all
increased relative to when the observers viewed the same
animations but attended to the specific visual properties of
the scene (i.e., speed and motion trajectories, relative posi-
tion of the shapes).

Here, we evaluate the kinds of attributions observers make
when viewing a large set of Heider-Simmel style vignettes
(100 unique animations in total) intended to convey stories
through the movements and interactions of simple shapes
(”Theatrical” animations, Roemmele et al. (2016)). Using
both free-response and constrained-selection approaches,
we ask observers to describe the ”gist” of the sequences,
then using a large language model we reconstruct the sim-
ilarity structure of the verbal descriptions of animations,
targeting key words/phrases for actions, interactions, emo-
tional states, and higher-order attributes about the mental
states of the characters. By integrating these semantic mod-
els with models capturing low-level visual features, we can
evaluate the relative contributions of intentional and per-
ceptual levels of analysis in the representational structure
of the social brain network.

Methods
Annotation Experiment
Participants Annotation data was collected from 79 un-
dergraduate students following experimental procedures as
approved by the Institutional Review Board at the Univer-
sity of California, Los Angeles.

Experimental Design and Procedure One hundred
Heider-Simmel style animations were obtained from a pub-
lic dataset (https://github.com/asgordon/TriangleCOPA)
originally created using the ”Heider-Simmel Interactive
Theater” tool (Gordon & Roemmele, 2014). Each anima-
tion is a depiction of a social narrative involving three char-
acters depicted as distinct shapes: a big triangle, a little
triangle, and a circle. The length of the animations varies
from 3.88s to 28.71s, with a mean of 11.13s (standard de-
viation of 4.97s). We will refer to these animations as ”Tri-
COPA” animations.
Each annotator observed all 100 animations in two stages
through a graphical interface designed in MATLAB App
Designer. In the first stage, the participant viewed half of
the stimuli and then generated one or more keywords that
they felt best described the gist of the animation (”free re-
sponse”). In the second stage, the participant annotated the
other half of the animations by selecting from a predefined
set of terms that included action, interaction, emotion, and
mentalistic features (”predefined responses”). Participants
were instructed to select as many labels as they felt were
suited to each animation.

Semantic Models From the annotations we created six
unique semantic models of similarity. The free response
model was constructed by concatenating all the terms iden-
tified by all the participants for each animation. The word
list of each animation was then projected into a semantic
space using Google’s Universal Sentence Encoder (USE)
language model (Cer et al., 2018), which takes text input,
and outputs a 512 dimensional embedding that best cap-
tures the semantic structure of the term list. The free re-
sponse model of similarity space was then calculated as
the Pearson correlation distance between the embeddings,
for all pairs of animations.
Annotation selections from the predefined terms were com-
bined into five distinct models as shown in Table 1. Action
features included terms for observable events that could be
completed by a single agent alone; interaction terms de-
scribed observable events that required the action of two
agents; emotion terms described the emotional valence
conveyed in the animation; mental cognitive labels de-
scribed inferences that could be made without reference
to emotional valence; and mentalistic emotional labels de-
scribed inferences that also involved the attribution of emo-
tional coloring. Finally, an additional model included all
predefined terms selected for each animation. The selected
predefined terms were concatenated across all participants
for each animation and projected into semantic space us-
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ing the USE model. The unique models of similarity space
were computed as the Pearson correlation distance between
all pairs of animation embeddings.

Table 1: Linguistic Models

Model Labels
USEact approach, chase, touch, separation, vi-

brate, attack, stalk, flee, avoid
USEint help, cooperation, competition, hug,

conversation, argue
USEemo positive emotion, negative emotion
USEmentcog unexpected, surprising
USEmentemo deceive, unwelcome, friendly, protec-

tive, scary

Perceptual Models In addition to the language models
described in the previous section, we built models of per-
ceptual properties in each animation, specifically targeting
features that signal agency (speed variations as a metric
for ”hidden energy”, Scholl & Tremoulet (2000)) and in-
teractivity (distance between agents). Speed models were
calculated for each shape as the Euclidean distance trav-
eled on each frame, which was then averaged across all the
frames for each animation, resulting in three average speed
scores (one for each character). Subsequently, these scores
formed the basis of three models of animation dissimilarity
based on the Euclidean distance between the average speed
of pairs of animations, which were included with three ad-
ditional models computed from the standard deviation of
speed for each agent calculated across the frames per each
animation.
Distance between agents describes the frequency with
which any two characters are close enough to depict social
interactions. This was calculated as the Euclidean distance
between all pairs of shapes in each frame of each animation
and averaged into a single score for that animation, which
were then used to construct dissimilarity models for pair-
wise potential interactions. Three similar models were built
from the standard deviation of distance between characters
within each animation.
The average and standard deviation of speed and distance
models were further combined in the variance partitioning
stage to form a single model group for speed (spd), and
another model for distance (dist).

fMRI Experiment
Participants Thirty participants (mean age 22.46, range
18 to 31, 15 male) with normal or correct to normal vision
participated in the fMRI experiment which was approved
by the Institutional Review Board at the University of Cal-
ifornia, Irvine.

Procedure All 100 TriCOPA animations were observed
in the MRI scanner by each participant over the course of

8 runs in a single scan session (12 or 13 animations per
run, with a fixed inter-trial interval of 4.5s). The animations
were horizontally flipped on half of the trials to counterbal-
ance the position of the room (left or right) around which
the characters interacted. Participants were instructed to
view the animations attentively so as to be able to answer
questions after the scan session, which asked ”What kinds
of interactions did you view in the movies? List as many
as you can recall.”

Data Acquisition Participants were scanned on a 3T
Siemens Prisma MRI scanner (Siemens Medical Solutions)
equipped with a 32-channel receive-only phase array head
coil. T1-weighted images were collected with magnetiza-
tion prepared rapid acquisition gradient echo (MPRAGE)
sequence. Functional images were acquired with an in-
plane resolution of 2x2x2mm (multiband accel. factor =
4) and using interleaved slice acquisition (transversal slice
orientation, 68 slices, TR = 1500 ms).

fMRI Preprocessing Results included in this manuscript
come from preprocessing performed using fMRIPrep
21.0.1 (Esteban, Markiewicz, et al. (2018); Esteban,
Blair, et al. (2018); RRID:SCR 016216) using the default
pipeline (https://fmriprep.org/en/stable/workflows.html),
including reconstructions into the fsaverage space using
FreeSurfer’s reconall. All further analyses were performed
under the BIDS standard (Poldrack et al., 2024) using the
PyMVPA BIDS-App (Torabian et al., 2023).

Regions of Interest Subjects in the fMRI experiment
also participated in two independent scans used for local-
izing regions of interest. In these scans observers viewed
eight 21s Heider-Simmel animations depicting social vi-
gnettes, alternated with eight unique animations of me-
chanical events (Martin & Weisberg, 2003). Regions of in-
terest were identified from a group level random-effects
analysis computed on the contrast social > mechanical,
with t-scores thresholded at two standard deviations above
the mean (right hemisphere: t > 6.82 and left hemisphere:
t > 6.28). These vertices were then grouped into parcels
derived from the Glasser atlas (Glasser et al., 2016), se-
lecting all parcels with at least 10% activated vertices to be
included for further analysis. Further parcel exclusion was
performed through significance testing as part of variance
partitioning, discussed below.

Model fitting and variance partitioning Trial-wise es-
timates of BOLD activity for each TriCOPA animation was
estimated by first de-trending and z-scoring each timeseries
for every voxel within each run. The BOLD response for
each trial was estimated using the LSS approach (Mum-
ford et al., 2014) that combined a boxcar model specifying
the onset and duration for each animation, convolved with
a canonical HRF. The design matrix included framewise
displacement as a nuisance regressor. The best-fit beta es-
timates for all trials were computed for each vertex using a
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fixed-effect general linear model (GLM), which were then
grouped by parcel and averaged across participants. Beta
estimates were z-scored within each vertex before inclu-
sion in the multivariate analyses.
A representational dissimilarity matrix (RDM) was con-
structed for each parcel using Pearson correlation and then
z-scored, as a metric for distance between trial-wise pat-
terns of activation for each parcel. A regression model
was built with the parcel RDM as the dependent variable
and a total of 7 language model RDMs and 12 perceptual
model RDMs as the independent predictors. The R2 from
this full regression was used to restrict further analysis to
the parcels with total variance explained that exceeded lev-
els expected by chance (alpha level of 5%). This criterion
was determined by creating null models in which the trial
scores of each feature model (semantic, perceptual) were
randomly permuted to generate a set of random RDMs
from which a null full-model R2 value can be calculated.
This process was repeated 1000 times to generate the dis-
tribution of R2 expected from chance alone, from which
significance levels were computed.
The parcels with significant variance explained by the full
model were further subjected to variance partitioning us-
ing the approach of commonality analysis (Nimon & Reio,
2011). The unique contribution of each class of feature
model was assessed through the change in variance ex-
plained with that group of models removed:

UniqueVar(model) = R2
f ull −R2

model (1)

For each parcel, we calculated the percent contribution of
each model group as its unique variance relative to the full
model R2.

Results

Model Comparison Figure 1 shows the pairwise corre-
lations between the perceptual models and the language
models obtained from USE embeddings. There was little
evidence of shared similarity between the perceptual mod-
els and the semantic models. Within the predefined seman-
tic models, correlations were highest between the general
USE model (all terms included) and the models of action
terms (USEact: r = .53) and the models of interaction
terms (USEint: r = .55). We take this as evidence that peo-
ple’s annotations of the TriCOPA animations slightly fa-
vored observable events (action and interaction terms) over
the cognitive mentalistic and emotional attributes.
The free response model (USEfree) captured unique di-
mensions of the similarity structure between the anima-
tions, as shown by modest correlations with all predefined
models and no meaningful correlation with the model of
emotional mentalistic attributions. These results suggest
that the intuitive free-response semantic model has the po-
tential to reveal new insights into neural structure that may
otherwise not be apparent by the predefined terms.
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Figure 1: Pairwise correlations between perceptual and lan-
guage models.

We further analyzed the free response model by cluster-
ing the animations into two groups based on their similar-
ities in high-dimensional embedding space. The most re-
peated labels within each cluster were retained and visual-
ized in Figure 2. The two clusters shared the terms ”trian-
gle”, ”circle”, and ”together”, while one cluster was dom-
inantly represented by action terms (i.e. ”leaving”, ”run-
ning”, and ”knocking”) and the other cluster consisted of
terms depicting communication (”talking”, ”fighting”, and
”arguing”).

Regions of Interest Table 2 shows atlas parcels with
at least 10% of vertices with stronger BOLD response
when observers viewed shape animations depicting social
vignettes vs. mechanical events, as assessed in an inde-
pendent localizer. This analysis identified the right pSTS
(parcels STSdp, STSda, STSvp) and bilateral ventral ante-
rior STS (STSva), the bilateral TPJ (PGi, TPOJ1, TPOJ2,
TPOJ3 and STV), and two medial parcels at the posterior
cingulate and precuneus (7m, 31pd, and PCV). Of these
parcels, the bilateral STSva, the right STSda and 7m, and
the left STV, pd31, and PCV were excluded due to insuf-
ficient variance explained by our full model of perceptual
and semantic dissimilarity spaces (alpha = 5%, as deter-
mined by estimating null models). The p-value associated
with each parcel is reported in the table.

Variance partitioning Figure 3 shows the results of the
feature models and the associated variance partitioning for
each parcel across both hemispheres. Across all parcels,
with one exception, the perceptual models and the free
response semantic model captured the most variance in
the similarity structure of the BOLD responses. The one
exception was the PGi bilaterally, for which the models
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box
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chasing

scared

hiding

knocking
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open
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Figure 2: Schematic illustration showing the most frequent
labels (count > 45) used in the free-response annotations,
with the embeddings split into two clusters in similarity
space. The green center captures the three most common
terms shared by both groups. The left (yellow) cluster shows
a dominance of labels signifying communicative interactions
and the right (blue) cluster includes a diverse array of action
features. Note that repetitions of the same label with minor
changes such as ”fight” and ”fighting” are visualized as a sin-
gle term.

constructed from the cognitive mentalizing terms (USE-
mentcog) best captured the variance among the semantic
models.
The perceptual model of interactivity captured the high-
est proportion of variance in the right TPJ and posterior
STS parcels (PGi, STV, TPOJ1, and STSdp). The semantic
model of interactive terms (USEint), however, did not well
explain the variance in the neural dissimilarity matrices,
which suggests that the processing of social interactions in
posterior and mid-STS may reflect the perceptual building
blocks for perceived interactivity (i.e. distance between the
actors) rather than discern the nature of the different types
of interactions (such as cooperation and conversation).
In the left hemisphere and the PCC, the perceptual models
for speed of the characters and distance between them per-
formed equivalently, with the exception of PGi which was
better explained by speed.

Discussion

In this study, we investigated humans’ attributions when
viewing a large set of Heider-Simmel style animations de-
signed to depict a wide range of simple and mentalistic in-
teractions. We constructed semantic models derived from
human annotations that reflected the similarity structure of
the descriptions, along with models of visual features rel-
evant to perceived interactivity. Targeting social cognitive
brain regions, we performed variance partitioning to evalu-
ate which of the models best explained the BOLD response
in parcels in the TPJ, pSTS, and posterior cingulate.

Table 2: Intersection of parcels with functional localizer.
Only parcels with at least 10% of vertices with strong BOLD
response to social interactions are shown. Further exclusion
of parcels was performed if the full-model within each parcel
did not exceed chance performance.

Parcel Left p-value Right p-value
PGi 35.03% < .001 51.81% < .001

TPOJ1 26.98% < .001 55.52% < .001
TPOJ2 35.00% < .001 15.11% < .001
TPOJ3 14.50% < .001 24.43% < .001
STV 65.88% .102 54.47% < .001

STSdp – – 20.20% < .01
STSda – – 30.92% .252
STSvp – – 23.60% < .001
STSva 14.54% .948 72.75% .102

7m – – 15.66% .134
31pd 15.04% .393 12.35% < .001
PCV 16.71% .292 – –

Pairwise correlations between a language model based on
free responses and models formed using predefined fea-
tures each captured a somewhat different organization of
the semantic space. Cluster analysis of the free-response
embeddings revealed that when given the opportunity to
freely describe the TriCOPA animations, observers relied
on a diverse array of terms that conveyed observable ac-
tions of individuals and communication between individu-
als. These results reveal the diversity and multi-level struc-
ture of attributions made while intuitively describing social
narratives.

The free response model, in particular, was very effec-
tive in describing the similarity structure of the neural re-
sponses in many of the parcels evaluated as shown by vari-
ance partitioning. To the extent that this was driven by the
communicative aspect of the annotations, this finding is
consistent with at least one previous study which identified
the presence of communication in interactions to uniquely
capture variance in the STS (McMahon et al., 2023). The
diverse and multi-level responses in the posterior and mid-
STS are also consistent with studies implicating the bilat-
eral STS as a general lexical conceptual site (Hickok &
Poeppel, 2007). Furthermore, regions on and around the
angular gyrus (AG) have been suggested as one of two
conceptual knowledge zones that are specifically involved
in knowledge about events and relations between entities
(Matchin & Hickok, 2020). Together, these previous stud-
ies and our findings may suggest that the more posterior
aspects of the lateral stream may reflect multi-modal repre-
sentations of social interactions. Alternatively, our results
may be taken as evidence that even simple linguistic de-
scriptions that capture narrative structures (”gists”) may
better model neural responses in the lateral stream than per-
ceptual features alone.

Variance partitioning also showed variance in the similar-
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Figure 3: Variance partitioning results. For each parcel, the dotted line denotes the R2 obtained from the full model that included
all perceptual and linguistic models. Percentages show the proportion of unique variance captured by each model.

ity structure of neural responses to be well explained by
the visual features in the animations. In the right hemi-
sphere, the TPOJ1 and adjacent STSdp, STV, and PGi
were best explained by a perceptual model of interactiv-
ity, consistent with previous reports that representations of
interactivity are a key feature represented within these re-
gions (Isik et al., 2017; Lahnakoski et al., 2012; Tarhan
& Konkle, 2020). Models of the perceptual features also
best explained variance in the right posterior cingulate, a
region that is both linked to cognitive load and to intro-
spective processes (Foster et al., 2023) and to social inter-
action (Schilbach et al., 2008). The study by Schilbach et
al. (2008) defined social interaction through facial expres-
sions as they appear when initiating communication. Our
findings, however, suggest that each of these brain regions
have neural signals that can be sufficiently explained by
perceptual models of implied interactivity without explicit
cues as to animacy (i.e. faces or bodies).

It is worth noting one specific semantic model that stood
out among the others, which was the cognitive mentalistic
key terms that captured violations of expectation (”unex-
pected” and ”surprising”). Among all the models derived
from predefined terms, the RDM constructed from this
model best described the similarity structure in the PGi,
a large parcel that is centered on the dorsal aspects of the
TPJ. Our finding that violations of expectation are linked
to the TPJ is consistent with prior literature linking this
region to prediction error (Abrahamse & Silvetti, 2016),
re-orienting (Patel et al., 2019), and false beliefs (Saxe &
Kanwisher, 2003). It is worth noting that the PGi is a rel-
atively large parcel that extends into the pSTS, and its in-

volvement in both interactivity and mentalizing might be
due to the activity of distinct subregions within the PGi.
Further breaking of the PGi into smaller parcels or a fine-
grained searchlight analysis at this region is needed for
more conclusive model comparisons.
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Sams, M., Hari, R., & Nummenmaa, L. (2012, Au-
gust). Naturalistic fMRI Mapping Reveals Superior Tem-
poral Sulcus as the Hub for the Distributed Brain Network
for Social Perception. Frontiers in Human Neuroscience,
6, 233. Retrieved 2025-02-03, from https://www.ncbi
.nlm.nih.gov/pmc/articles/PMC3417167/ doi: 10
.3389/fnhum.2012.00233

Malik, M., & Isik, L. (2023, November). Relational
visual representations underlie human social interaction
recognition. Nature Communications, 14(1), 7317. Re-
trieved 2024-07-04, from https://www.nature.com/
articles/s41467-023-43156-8 (Publisher: Nature
Publishing Group) doi: 10.1038/s41467-023-43156-8

Martin, A., & Weisberg, J. (2003). Neural Founda-
tions For Understanding Social And Mechanical Con-
cepts. Cognitive neuropsychology, 20(3-6), 575–587. Re-
trieved 2022-05-19, from https://www.ncbi.nlm.nih
.gov/pmc/articles/PMC1450338/ doi: 10.1080/
02643290342000005

Matchin, W., & Hickok, G. (2020, March). The Cortical
Organization of Syntax. Cerebral Cortex (New York, N.Y.:
1991), 30(3), 1481–1498. doi: 10.1093/cercor/bhz180

McMahon, E., Bonner, M. F., & Isik, L. (2023,
December). Hierarchical organization of social ac-
tion features along the lateral visual pathway. Cur-
rent biology : CB, 33(23), 5035–5047.e8. Re-
trieved 2025-01-30, from https://www.ncbi.nlm.nih
.gov/pmc/articles/PMC10841461/ doi: 10.1016/j.cub
.2023.10.015

Moessnang, C., Otto, K., Bilek, E., Schäfer, A., Baumeister,
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