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Highlights

e Motor imagery ability influences how the brain represents and recognizes one’s own
movements.

e Distinguishing the self from others using movement patterns can be decoded in brain
regions linked to motor-based and action processing.

e Brain regions for body and social perception help identify people based on their motion
patterns.
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Abstract

We recently identified cortical areas in the Action Observation Network that preferentially encoded self
actions from minimal kinematic cues (Kadambi et al., 2025). Here, we investigate how identity decoding
in these brain areas (Inferior Parietal Lobules, IPL; Inferior Frontal Gyri, IFG; Primary Motor Cortex,
M1; Extrastriate Body Area, EBA; Superior Temporal Sulci, STS) relate to motor imagery ability. Using
multivariate decoding and localizer analyses, we found that frontoparietal regions (IPL, IFG, and M1)
selectively decoded self-identity, while occipitotemporal regions (EBA and STS), did not show such self-
specific selectivity, but largely decoded across identities. Participant variability in motor imagery ability
was positively associated with self-identity decoding in the IPL, EBA, STS and negatively with other-
identity decoding in the IFG. These results introduce functional links between motor imagery and self-
action decoding, emerging from frontoparietal and occipitotemporal regions.
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1. Introduction

Our actions shape how we engage with the world and how we come to know it (Merleau-Ponty,
1945). While we have extensive visual experience observing the actions of others, third-person
perspectives of our body movements are rare, and typically confined to mirrors or video
recordings. Yet, from only around a dozen dots localized to key joints on the human body,
humans can infer their own identity (Loula et al., 2005; Kadambi et al., 2024; Burling et al.,
2019), as well as numerous high-level attributes from such visually sparse point-light displays
(PLD)s, including action categories (Dittrich, 1993; van Boxtel & Lu, 2011), gender (Kozlowski
and Cutting, 1977; Pollick et al., 2005), affect (Atkinson et al., 2004; Dittrich et al., 1996; De
Gelder et al., 2015; Roether et al., 2009; Coulson, 2004), social intent (Manera et al., 2010; van
Boxtel & Lu, 2012), and an innate sensitivity to visually sparse biological motion is observable
even in newborns (Simion et al., 2003).

Self-recognition performance from PLDs depends on motor expertise. PLDs that involve more
goal complexity (e.g., dancing) are better self-recognized than actions with less (e.g., waving;
Loula et al., 2005; Kadambi et al., 2024, 2025; Burling et al., 2019). Self-performed PLDs are
also recognized better than visually familiar friends and in a viewpoint invariant manner, in
contrast to the viewpoint dependence observed for visually familiar others (Jokisch, Daum, &
Troje, 2006). Beyond explicit visual recognition, this self-advantage extends across various
domains, including implicit recognition of body parts (e.g., Frassinetti et al., 2011), action
outcome prediction (e.g., Knoblich and Flach, 2001), facial expression decoding (Cook et al.,
2012), memory for self-performed action verbs (Engelkamp and Krumnacker, 1980; see
enactment effect), and multimodal action recognition (e.g., Repp and Knoblich, 2004; Flach et
al., 2004; Murgia et al., 2012, Kennel et al., 2014).

Since PLDs only depict sparse visual information, the observed self-recognition advantage may
be further attributed to non visual, potentially motoric factors (see Tsakiris 2010 for a review). A
plausible candidate to support self-action recognition is motor imagery, or the motor simulation
of movement without overt action execution (Jeannerod 2006). Motor imagery is implicated in
well-known theories of action processing and in both the biological motion perception and self-
recognition literature (Casile & Giese, 2006; Miller & Saygin, 2013; Kadambi et al., 2024).
From systems-level brain imaging data, motor imagery engages partially overlapping neural
substrates with motor execution—particularly in premotor and parietal cortices (Hardwick et al.,
2018; Grezes and Decety, 2001; Caspers et al., 2010)—which could bridge action perception
and self-identification (lacoboni and Dapretto, 2006). Individuals with greater motor imagery
ability also perform better on various biological motion tasks. These tasks include:
discriminating the movement direction of a moonwalking point-light walker (Miller and Saygin,
2013) and improved motor learning from action observation (Lawrence et al., 2013), as well as
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in self-action recognition studies from PLDs (Kadambi et al., 2024). Engaging in motor imagery
also increases the degree of activity in these brain regions during action observation (Eaves et
al., 2016). If motor imagery indeed facilitates biological motion perception, it may then be an
especially important mechanism for mapping motor experience to self-action recognition.

A related open question is how motor imagery relates to the neural basis of self-recognition
from actions. In our recent neuroimaging study on self-recognition of PLDs (Kadambi et al.,
2025), we observed greater engagement of frontoparietal regions during action observation,
notably the inferior parietal lobule and inferior frontal cortex, which are often associated with
action simulation functions. In contrast, occipito temporal (OT) regions, like the EBA, also
generally engaged during body and action observation, showed non-specific engagement for all
identities (self-actions, friend-actions, and stranger-actions). These occipitotemporal areas seem
to encode intact, body-related features (e.g., both static and dynamic postural attributes related
to the human body: Zimmermann et al., 2018; De Gelder and Solanas, 2021; Downing et al.,
2006; Walbrin et al., 2019; Orgs et al., 2016). However, the EBA is also implicated in self-
processing, such as bodily self-awareness (Vocks et al., 2010; Hodzic et al., 2009), agency
(David et al., 2008), and preferences for one’s own body (Myers and Sowden, 2008; Berlucchi
and Aglioti, 2009). Additionally, the superior temporal sulcus (STS) is sensitive to biological
motion processing (Grossman & Blake, 2001; Thurman et al., 2016) and social perception, such
as imitation (lacoboni et al., 2001), intention understanding (Saxe et al., 2004; Brass et al.,
2007), valence (Verosky and Todorov, 2010; Candidi et al., 2015), and social interactions
(Masson and Isik, 2021; Isik et al., 2017). The larger extent to which these regions contribute to
self-recognition and their relation to motor imagery remains unknown.

To directly examine the role and neural basis of motor imagery in self-recognition, we employed
multivariate pattern (MVPA) and functional localizer analyses on data collected in our recent
study of self-action recognition (Kadambi et al., 2025). Across two sessions, we first recorded
participants’ body movements, along with their sex-matched close friend using a motion capture
system and converted the movements to point-light displays. After a delay period (~2-3 weeks),
the participants returned for the second session consisting of a self-recognition task with their
motion captured actions applied during neuroimaging. The present work introduces two main
advances beyond the original report. First, by employing ROI-based MVPA, we investigated
whether activity patterns in frontoparietal and temporo-occipital regions relevant to action
processing reveal finer-grained neural decoding for self- versus other-recognition. Second, we
relate participants’ self-reported motor imagery traits with neural decoding in these regions to
examine whether motor imagery ability influences self-action recognition and its underlying
neural basis.
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2. Methods

2.1 Participants

Twenty right-handed undergraduates (Mage=20.55, SDag=1.73; 12 females, 8 males) from
around the University of California, Los Angeles area were recruited using convenience
sampling. All participants were compensated for their time. All participants had normal or
corrected vision, no physical disabilities, and were unaware of the study’s purpose. Sample size
was determined based on prior fMRI studies using point-light biological motion (Saygin et al.,
2004; Chang et al., 2021; Engelen et al, 2015) and self-generated point-light displays (Bischoff
et al., 2012). The study was approved by the UCLA Institutional Review Board.

2.2 Apparatus

In order to capture participants’ movements for the self-recognition task, we used the Microsoft
Kinect V2.0 and Kinect SDK for motion capture, consistent with prior research on self-action
recognition (Kadambi et al., 2024; Burling et al., 2019). Key joint coordinates in three
dimensions (X-Y-Z) were recorded at ~33 frames per second. Each action sequence began and
ended with a T-position signaled by the participant and was standardized in scale for the
experiment. The action stimulus displayed in the experiment did not include the T-position. To
reduce occasional frame-to-frame noise jitter, manual corrections were applied by replacing
problematic frames with the preceding stable frame. Custom software from our lab was used for
action processing and smoothing (Van Boxtel & Lu, 2013).

2.3 Stimuli

Twelve actions (argue, wash windows, get attention, hurry up, stretch, play guitar, jumping
jacks, basketball, digging, chopping, laughing, directing traffic) were selected from our
previous work on self-action recognition (Burling et al., 2019; Kadambi and Lu, 2019; Kadambi
et al., 2024). These actions convey a range of variability in terms of action planning. PLDs were
created using the above method for each participant, a sex-matched friend, and a sex-matched
stranger. The stranger's action was randomly selected from one of three possible distractors for
each sex (six total), pre-captured from actions of two of the experimenters and research
assistants.

Six of the actions (i.e., argue, wash windows, get attention, hurry up, stretch, and play guitar)
were categorized as “verbally instructed actions”, based on a high degree of motoric goal
complexity, as defined in our previous work (Burling et al., 2019; Kadambi et al., 2024). These
actions were verbally instructed by the experimenter to the participant (e.g., “Please perform the
action: ‘to argue’). The remaining six actions were visually instructed by showing participants
videos of actions performed by a stick figure . These actions were selected from the Carnegie
Mellon  Graphics (CMU) Lab Motion Capture Database available online
(http://mocap.cs.cmu.edu) and depicted a range of goals (i.e., jJumping jacks, basketball, digging,
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chopping, laughing, directing traffic). To perform the visually instructed actions, participants
first observed videos selected from the CMU dataset, with a stick figure performing an action
without any verbal label provided. Then, they were instructed to imitate the movements of the
action. The categorization of the action types, in addition to providing variability of the action
goal, allowed us to further explore secondary analyses contrasting actions involving less motor
familiarity due to copying someone else’s motor plan (visual instruction) versus a different set
of actions that involved more motor familiarity due to freely performing the action (verbal
instruction).

2.4 Vividness of Motor Imagery Questionnaire

The Vividness of Movement Imagery Questionnaire-2 (VMIQ-2; Roberts et al., 2008) is a
standardized psychometric survey measuring individual differences in the subjective vividness
of motor imagery across three distinct imagery perspectives: internal visual imagery (first-
person perspective), external visual imagery (third-person perspective), and Kinesthetic imagery
(felt experience of movement). The VMIQ-2 consists of 12 wholebody action items for each
perspective, including kicking, running, and jumping, as well as fine motor tasks like writing
and threading a needle. Participants are instructed to generate mental images of themselves
performing each action and rate the clarity or vividness of these images using a five-point Likert
scale, ranging from 1 ("Perfectly clear and as vivid as normal vision™) to 5 ("No image at all, |
only know that I am thinking of the movement™). Note that the scale is reversed scored, such that
lower scores in VMIQ-2 indicate more vivid images and stronger motor imagery ability.

2.5 Procedure

Behavioral Session

Participants’ body movements were recorded using the Microsoft Kinect V2.0 and Kinect SDK
in a quiet testing room in Session 1. The Kinect was placed 1.5 m above the floor and 2.59 m
away from the participant. Participants were instructed to perform the actions in a rectangular
space to provide flexibility in how to perform the action while remaining within recording
distance. Participants were instructed to naturalistically perform 12 different actions as
described above and recorded by our motion capture system. They signaled the start and stop of
action performance by performing an outstretched T-pose with their arms. Participant actions
were then recorded and converted to point-light stimuli for use in the fMRI session.

Each of the 20 participants also brought a close friend of the same sex, who was separately
recorded using the same paradigm. The recordings of the close friend were later used in the
fMRI session to assess the impact of visual familiarity. None of the participants were informed
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about the study’s purpose on self-recognition but were provided a general description that the
study examined visual action processing.

After the recording session, participants completed the Vividness of Motor Imagery-2 (VMIQ-2;
Roberts et al., 2008) to measure motor simulation ability. Note that a few other attitudinal
questionnaires, including the Autism-Spectrum Quotient (AQ; Baron-Cohen et al., 2001),
Schizotypal Personality Questionnaire (SPQ; Raine, 1991) were also administered during
Session 1 but were not included in the analyses reported here.

Blank ITI

(M=55) )
Action Action Types

(5s)

Response Verbal instruction (6): Stretch, Guitar, Hurry Up,
(2s) | _Get Attention, Wash Windows

Visual Instruction (6): Jumping Jacks, Direct Traffic,
Laughing, Basketball, Chopping, Digging

Self, Friend,

or Other?

Time *

Figure 1. Trial structure including timing. Participants centrally attended to a white fixation cross until
the action (self/friend/other) appeared for 5 s. On a subsequent screen, participants had 2 s to make their
identity judgment, followed by the variable ITI (mean-centered at 5 s). The response order of self, friend,
other was counterbalanced to reduce any impact of motor order.

fMRI session

After a delay period of around two-three weeks (mean delay days=18.55, SD=2.87), participants
returned for brain imaging in Session 2. The total duration of the fMRI session lasted
approximately 47 minutes, which included: initial acquisition scans (~5 minutes), localizer task
(~8 minutes), self-recognition task (~24 minutes), and resting state scan (~10 minutes).

After initial brain acquisition scans, participants underwent functional localization. Two
separate functional localizer scans were collected for posterior superior temporal sulcus (pSTS);
Grossman et al., 2000; Grossman et al., 2010) and extrastriate body area (EBA; Peelen &



Journal Pre-proof

Downing, 2005; Downing et al., 2006; Downing et al., 2001). Each localizer was presented in a
block design with alternating blocks of target and contrast stimuli, separated by jittered fixation
intervals.

For the pSTS localizer, we used a standard biological motion functional localizer (Grossman et
al., 2000) in which observed PLDs composed of 12 dots, globally constructed to perform 12
different everyday actions (e.g., jumping, kicking, running, throwing). While our main task, by
contrast, used 25-dot PLDs (including fingers and additional joints) to maximize visual
information for identity recognition, the localizer served only to define independent ROIs linked
to biological motion, not to match stimuli and remained consistent with standard 12-dot PLDs
(e.g., Grossman et al., 2000; Saygin et al., 2004). Participants also observed spatially scrambled
PLDs in which the individual local dot trajectories of the point-light display remained intact, but
the global configuration of the point lights was randomly displaced by randomizing the starting
positions of the dots. Sensitivity to intact biological motion was contrasted with spatially
scrambled biological motion for the task contrast of interest. Stimuli were displayed at 40
frames per second. Each trial lasted approximately 2 seconds followed by a jittered fixation
period. The run included 12 alternating stimulus blocks (6 intact PLDs, 6 scrambled PLDs),
interleaved with fixation periods (3 TRs), for a run duration of approximately 4 minutes.

For the EBA localizer, we used a standard body localizer (Downing et al., 2001) in which
participants viewed headless grayscale photographs of human bodies (target condition) or chairs
(contrast). Images were identical in size (400x400) and presented sequentially for 300 ms,
followed by a 450 ms fixation, with a stimulus onset asynchrony of 750 ms. Each block
contained 7 images (~5.25 s), followed by a 6-second fixation interval (3 TRs). A total of 12
blocks (6 body, 6 chair) were presented in alternating order. The run duration was ~4 minutes.

To ensure attention, participants also performed a one-back repetition detection task during both
localizers. On ~20% of trials, the same stimulus (PLD or image) was repeated in immediate
succession within a block. Participants were instructed to press the left response button when
they detected such a repetition.

After the localizer scans, participants underwent the self-recognition task. For each trial of the
task, participants observed a point-light display consisting of 25 joints, localized to the: head
(head, neck, clavicle; 3 dots), arm (biceps, elbows, wrists; 6 dots), hands (fingers; 6 dots),
stomach (1 dot), hips (3 dots), knees (2 dots), and leg (shin, feet; 4 dots). Each point-light
display either showed their own action (self), same-sex familiar friend, or same-sex stranger
action for a five-second duration. The same-sex stranger was selected at random (out of two
options) between participants. Once selected, this stranger was consistently used for all actions
involved in the experiment for that participant.
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Shown in Figure 1, participants observed the action for five seconds, and were then prompted to
identify with a finger-press response on the button box with the right hand whether the action
video shown was their own, friend, or stranger within a two-second maximum response period.
Participants responded by pressing one of three keys, with the index finger on the first, the
middle finger on the second, and the ring finger on the third key. One identity was assigned to
each key, and identity-key mapping was counterbalanced across subjects. Response mapping of
self/friend/stranger was randomized between participants to reduce effects of trial structure or
motor preparation or planning demands.

Participants’ response was followed by jittered intertrial intervals (ITI) mean-centered at five
seconds. There were four runs per participant, each consisting of 36 trials (12 trials per identity
condition) in an event-related design. Experimental conditions within each run were
pseudorandomized to reduce stimulus autocorrelation related to order and sequence effects, as
well as correlated noise such as scanner drift.

2.6 MRI Acquisition

Magnetic resonance imaging was conducted using the Siemens 3-Tesla Prisma Fit scanner at the
Staglin IMHRO Center for Cognitive Neuroscience, equipped with a 32-channel head coil.
Scanning parameters for the T1 MPRAGE included: repetition time=2000 ms, echo time=2.52
ms, voxel size=1.0 mm? isotropic voxels. T2*-weighted Gradient Recall Echo sequence was
used for functional scan acquisition. Scanning parameters for the main task included repetition
time=700 ms, echo time=33 ms, voxel size=2.5 mm isotropic voxels, field of view=192 mm,
and flip angle=70°. Scanning parameters for the localizer task included repetition time=2000
ms, echo time=33 ms, voxel size=2.5 mm isotropic voxels, field of view=192 mm, and flip
angle=70°. Four dummy scans were acquired and discarded before each scan to account for
scanner stabilization. Participants underwent four runs of 36 trials each, with each run lasting
approximately 360 seconds. Five dummy scans were acquired and discarded for the localizer
tasks. All stimuli were presented on a projector and viewed through a mirror mounted on the
head cover in the scanner.

2.7 ROI Creation

Functional Localizer ROIs
To localize the extrastriate body area (EBA), we measured the functional activation from the

task contrast bodies>chairs elicited by the functional localizer in native space, uncorrected
p<.05. Given the widespread activity evoked by the contrast, we constrained activity to the
anatomical parcellation of the inferior lateral occipital cortex (LOC) from the Harvard-Cortical
atlas generated by FSLEYES
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and thresholded the mask to include the top 70%
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of voxels. The identical procedure was used for the posterior superior temporal sulcus (pSTS),
with functional activation of interest measured by the contrast of intact>scrambled PLD and
then constrained to the anatomical parcellation of the posterior superior temporal gyrus from the
Harvard-Cortical Atlas. We used localizers specifically for the occipitotemporal regions since
these regions are well-suited for stimulus-driven localizers (e.g., faces, bodies, objects), and
isolate the relevant category-selective cortex. Importantly, functional localizers increase
sensitivity and specificity since they are based on each participant’s actual activation pattern.
This is especially important in the occipitotemporal regions, since functional topography varies
substantially across individuals in these regions.

Meta-analysis ROls
ROIs for MVPA in the inferior parietal lobule (IPL) and inferior frontal gyri (IFG) were

constrained to spherical regions implicated in bodily self-processing and action processing based
on peak coordinates drawn from an activation likelihood estimation meta-analysis of action
observation and imitation (Grosbras et al., 2012). In total, the meta-analysis incorporated over
90 fMRI and PET experiments (~993 subjects) and the studies included dynamic human stimuli
(e.g., videos, point-light displays) and excluded cvert movement, motor imagery, emotional
behaviors, or clinical populations. Voxel-wise ALE maps were computed to estimate
convergence of activation probability across studies, and the reported peak coordinates served as
the basis for our ROI definitions. When the meta-analysis reported a region in only one
hemisphere, we generated the contralateral ROI by inverting the x-coordinate. While the meta-
analysis did not include the primary motor cortex (M1), we also included M1 using peak
coordinates from our prior study which identified the M1 as an important site for self-identity
decoding (Kadambi et al., 2025). Importantly, since the M1 peak was derived from the same
dataset as Kadambi et al., 2025, we define the M1 as a hypothesis-driven ROI (rather than an
independent ROI). We do not interpret the ROI in detail. For the coordinate-based ROIls, we
accounted for individual variability in the peak ROI location by defining a sphere of 3-mm
radius centered around the meta-analytic coordinate and moved the sphere within 4 voxels in
each x,y,z direction for each participant as a ROI selection step. After exploring the search
space, we then identified the ROI that produced the peak response for (self > friend and self >
stranger) at the group-level. We then conducted the final MVPA with this peak coordinate. See
Table 1 for a list of all coordinates used.

2.8 Imaging Analyses
Univariate Analysis
All univariate results are reported in Supplementary Materials and Kadambi et al., (2025). For

the purposes of this article, we focus on the multivariate and functional localizer analyses and
results.

10
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Multivariate Analysis (MVPA)
Region of interest (ROI)-based MVPA was implemented using the CoSMoMVPA toolbox

(http://www.cosmomvpa.org/; Oosterhof et al., 2016) in MATLAB R2020a. Regressors were
defined based on the onsets and durations of the three experimental conditions (self-actions,
friend-actions, or stranger-actions). Using the Least-Squares Separate approach, beta-series
parameter estimates (Rissman, Gazzaley, & D’Esposito, 2004; Mumford et al., 2012) were
iteratively estimated per trial by modeling a regressor for the event of interest in the trial and a
regressor for all other events within the run. Standard motion parameters were also included as
regressors in each trial-wise GLM. Preprocessing was identical to the univariate analysis, but no
smoothing was applied. For each run, we extracted the 36 beta weights from each participant,
normalized each beta weight within run, computed the average for each of the 36 action targets
across all runs, and then demeaned the data (i.e., subtraction of the grand mean of all averaged
targets from each averaged target). A linear support vector machine (SVM) was trained on
neural activity patterns from three runs and tested on the remaining one run using the leave-one-
run-out cross-validation measure for each participant.

Table 1. ROI Coordinates used for MVPA. The original location refers to the meta-analytic coordinate.
New peak refers to the peak coordinate identified in the grid search space.

ROI Name Original Location (x, y, z) New Peak (x, y, 2)
IFG RH 54, 28, 18 54, 30, 20
IFG LH -54, 28, 18 -54, 28, 20
IPL RH 44, -56, 16 36, -56, 16
IPL LH -44, -56, 16 -48, -52, 18
M1 RH 30, -23, 56 28, -22, 64
M1 LH -30, -23, 56 -38, -20, 64

11

Note: EBA and STS regions were determined from functional localizer activation
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Figure 2. Regions-of-interest (ROIs) used for multivariate pattern analyses (MVPA). Panel A
depicts Inferior Frontal Gyri (IFG) and Inferior Parietal Lobule (IPL) coordinates (from Grosbras et al.,
2012) and M1 defined from our prior work (Kadambi et al,. 2025). Red ROIs indicate the IFG, blue
indicates IPL, and yellow indicates primary motor cortices (M1). Panel B depicts functional ROIs from a
sample participant. The functional localizer ROIs were identified using functional localizer activity
intersected with ROI-based anatomical masks from the Harvard-cortical atlas. The top 70% voxels were
selected for each respective functional ROI.

Multiple Regression Analysis
To measure associations between motor imagery ability and identity decoding, we employed

backwards multiple regression analyses as a predictor selection step (using all VMIQ-2
subscales: kinaesthetic, internal, and external motor imagery) and follow-up Pearson
correlations. The purpose of conducting independent, follow-up correlations was to ensure
veridical relationships. Specifically, if we could not replicate the multiple regression analysis in
post-hoc correlations, this could suggest that the results depend on the presence of other
predictors in the model. However, if the predictor emerges significantly from the regression
model and subsequently confirmed by separate bivariate correlations, the convergence
strengthens confidence that the relationship reflects a genuine effect. Mean multivariate
decoding accuracies were extracted from regions of interest for each two-class identity decoding
(self vs stranger, self vs friend, friend vs stranger) and set as outcome variables.
Multicollinearity was assessed using the Variance Inflation Factor (VIF). All predictors satisfied
VIF criteria (no predictors had VIFs >5). Model significance was assessed using p-value
significance and adjusted R® to balance parsimony and explanatory variance. To account for
multiple comparisons, p-value significance between models was adjusted using a threshold

12



Journal Pre-proof

impinged on significant models (p>0.05), with the Benjamini-Hochberg False Discovery Rate.
Unstandardized coefficients and 95% confidence intervals were reported in the final model. For
non-significant associations, we report the lowest non-significant p-value model.

3. Results

3.1 Behavioral Results
First, we examined self-recognition accuracy in the visually sparse point-light displays. As

previously reported in Kadambi et al (2025), one-sample t-tests revealed that participants could
discriminate all identities (self, friend, stranger) significantly above chance (.33), self: M=.563,
SD=.180, t(19)=5.789, p<.001, cohen’s d=1.29; friend: M=.483, SD=.182, t(19)=3.754, p=.001,
d=.839; stranger: M=.5052, SD=.172, t(19)=4.554, p<.001, d=1.01 (Figure 3). Pairwise t-tests
corrected using Tukey’s HSD revealed that self-generated actions (M=.563, SD=.180) were
recognized significantly greater than friends’ actions (M=.483, SD=.182), t(19)=2.673,
Pagi=-049, d=.598, and non-significant relative to strangers’ (M=.505, SD=.172), t(19)=1.353,
p=.192. No difference was observed between recognition of friends’ vs strangers’ actions,

Behavioral Accuracy by ldentity

1.0 *

Accuracy
o
o

0.0

Self Friend Stranger

t(19)=-.454, p=.655.

Figure 3. Behavioral results of identity recognition accuracy. Mean recognition accuracy for each
identity. Box plots denote that all identities were recognized significantly above chance (.33). Middle
horizontal line reflects the median accuracy value. The upper and lower edges of each box denote the
interquartile range, while the whiskers extend to the minimum and maximum observed values (1.5 times
the interquartile range). Self actions were recognized significantly better than friend actions, and non-
significant compared to strangers. No significant difference was observed between friends and strangers.

13
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Error bars indicate the standard error of the mean (SEM). The horizontal dashed blue line indicates
chance-level recognition accuracy (.33). * p < .05, ** p .01, *** p .001.

A significant interaction effect between action type and identity was also observed for self-
generated actions, F(2,19)=7.546, p=.002, an:.284, revealing an effect of motor planning:
actions generated by one’s own motor plan (i.e., verbally instructed, M=.615, SD=.198) were
better recognized relative to actions that were performed by copying someone else’s motor plan
(visually instructed, M=.513, SD=.189), t(19)=3.170, paj=-049, d=.709. Motor planning did not
modulate recognition accuracy for any of the other identities, friends t(19)=.340, p=.999, nor
strangers, t(19)=-2.195, p=.285. All post-hoc comparisons were corrected using Tukey’s HSD.
These results confirm action identity could be distinguished in the sparse visual displays, with an
advantage for actions generated with one’s own motor plan. Additional behavioral analysis on
the individual actions are reported in Kadambi et al (2025).

3.2 Region-of-Analysis (ROI) Multivariate Pattern Analysis

Next, we used independently derived ROI-based MVPA to measure two-class decoding
accuracy between each identity (self, friend, stranger) in the bilateral Extrastriate Body Area
(EBA), Superior Temporal Sulcus (STS), Inferior Parietal Lobule (IPL), Inferior Frontal Gyri
(IFG), and Primary Motor Cortices (M1) computed using one sample t-tests relative to chance
performance (.50). We corrected for multiple comparisons using the false discovery rate (FDR)
(Benjamini & Hochberg, 1995) on the number of ROIs (10 ROIs; ¢<.05). Specifically, for
coordinate selection on the meta-analytic ROIls, we used the grid-search approach to identify the
mean peak coordinate. The grid-search approach aimed to accounted for individual variability in
the peak ROI location by defining a sphere of 3-mm radius centered around a meta-analytic
coordinate (Grosbras et al., 2012) within a range of +/- 4 voxels in 3D space for each participant
as a ROI selection step. After exploring the search space, we then identified the ROI that
produced the peak response for (self > friend and self > stranger) at the group-level. The final
MVPA was conducted with this peak coordinate. For coordinate selection on the functional
localizers, we used the ROI generated from the localizer analysis. A summary of decoding
results are referenced in Table 2.

3.2.1 Frontoparietal regions: Inferior Parietal Lobule and Inferior Frontal Gyrus decode
self identity
We examined classification decoding accuracy in the frontoparietal regions (Fig 4, Top Panel)

using one-sample t-tests against chance performance (0.5) and corrected for multiple
comparisons using FDR. For the IPL (left: x,y,z=-48,-52,18; right: x,y,z=36,-56,16), we found
selective decoding accuracy for the self from other identities in the left hemisphere: self v
friend, Mclassification:.566, t(19)23.608, padj:.008, 95% CI [.0280, .1054], cohen’s d:.807; self v
stranger, Meiassification=-544, 1(19)=4.087, paj=.-006, 95% CI [.0218, .0675], d=.914. No
significant decoding accuracy was found for friend vs stranger, Mjassification=-503, t(19)=.271,
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Padj=-816, 95%CI [-.249, .992], d=.061. For the right IPL, we found significant decoding
accuracy for self v stranger, Mgassification=-5323, t(19)= 2.730, pagj=-0284, 95% CI [.0075, .0571],
d=.610 and marginal for self v friend, Mcjassification=-541, t(19)=2.224, padj=.0631, 95% CI [.0025,
.0809], cohen’s d=.497. No significant decoding accuracy was found for friend vs stranger,
Melassification=-5224, 1(19)= 1.80, pagi=.1315, 95%CI [-.0036, .0483], d=.403.

For the IFG (left: x,y,z=-54,28,20; right: x,y,z=54,30,20), the self could be selectively decoded
from other identities in the right hemisphere: self v friend, Mciassification=-5459, t(19)=2.763,
padj=.0284, 95% CI [.131, 1.091], cohen’s d=.618; self v stranger, Mcpssification=-5313,
t(19)=2.445, p,q=.0488, 95% CI [.069, 1.011],d=.547. No significant decoding accuracy was
found for friend vs stranger, Mgassification=-517, t(19)= 1.641,paq=.816, 95% CI [-.091, .816],
d=.367. We did not find significant identity decoding in the left hemisphere (self v friend,
Melassification=-5125, t(19)=1.082, pagi=-3512, 95% CI [.0017,.0367], cohen’s d=.242; self v
stranger, Mcassification=-5207, t(19)=2.261, padj=.0631, 95% CI [.033, .966], d=.506; friend v
stranger, Mciassification=-492, t(19)=-.787, pagj=-5088, 95% CI [-.615,.268], d=-.176.

For the M1 (left: x,y,z=-38,-20,64; right: x,y,z=28,-22,64), we found selective decoding accuracy
for the self in the left hemisphere: self v friend, Mgjassification=-5651, 1(19)=4.631, padj=.0043,
95% CI [.0357, .0945], cohen’s d=1.035; self v stranger, Moclassification=.5469, 1(19)=3.229,
Patj=-0165, 95% CI [.0165, .0772], d=.772. No significant decoding accuracy was found for
friend v stranger, Mciassification=-4927, 1(19)=-.651, pag=-5184, 95% CI [.0310, .0163], d=-.146.
For the right hemisphere, we found significant decoding accuracy for self v friend,
Mclassification=-536, 1(19)=3.112, Pagj=.0189, 95% CI [.198, 1.179], d=.696. No significant
decoding accuracy was found for self v stranger, Mgassification=-5193, t(19)=1.141, pagi=-3348,
95% ClI [-.194, .698], d=.255; friend v stranger, Mciassification=-5047, 1(19)=.398, pagj=.7442, 95%
Cl [-.351, .527], d=.0809.

3.2.2 Occipitotemporal regions: EBA decodes between all identities and STS decodes
between friend identity
We next examined classification decoding accuracy in the occipitotemporal regions (Figure 4,

Bottom Panel) using one-sample t-tests against chance performance (0.5) and corrected for
multiple comparisons using FDR. For the EBA, significant decoding accuracy was observed for
all identities (though note that self v stranger in the right EBA did not survive multiple
comparisons correction). In the left EBA: self v friend, Mcassification=-5443, 1(19)=2.881,
Pagj=.0225, 95% CI [.0121, .0764], cohen’s d=.644; self v stranger, Mgiassification=-5499,
t(19)=3.069, padj=.0189, 95% CI [.0159, .0839], d=.686; friend v stranger, Mcjassification=-5495,
t(19)=3.675, pagj=.0075, 95% CI [.0213, .0777], d=.882. In the right EBA: self v friend,
Melassification=-5422, 1(19)=2.912, padj=.0225, 95% CI [.0119, .0725], cohen’s d=.651; self v
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stranger, Mgiassification=-5297, 1(19)=2.246, pag=-0631, 95% CI [.0020, .0574],d=.502; friend v
stranger: Mcjassification=-5364, 1(19)=3.579, pagj=-0085, 95% CI [.0151, .0577], d=.800.

For the STS localizer, significant decoding accuracy was observed in the right hemisphere for
some identity comparisons, but none for the left hemisphere. In the right STS: self v friend,
Mclassification=-0541, t(19)=3.716, padj=.0084, 95% CI [.0236, .0845], cohen’s d=.831; self v
stranger, Mgassification=-5432, 1(19)=2.194, pagj=.2204, 95% CI [.0020, .0845];d=.491, friend v
stranger, Massification=-5495, 1(19)=3.675, pagj=-0043, 95% CI [.0213, .0777], d=.882. In the left
STS: self v friend, Melassification=-5197, t(19)21.522, padj=.1971, 95% CI [.0074,.0469], cohen’s
d=.340; self v stranger, Mgjassification=-5197, t(19)=1.430, padj=.2204, 95% CI [-.0091,.0484],
d=.320, friend v stranger, Mciassification=-5031, t(19)=.177, pagj=.895, 95% CI [-.0331,.0392],

Frontoparietal Regions
IPL IFG M1

3 o =e ~ N A . wx *
206 NS NS NS NS NS Ns NS ns NS NS

LH RH LH RH LH RH
Occipitotemporal Regions
EBA STS
1.0
0.9
0.8
go‘r

306 - ! > NS " NS NS Ns NS

K o
i

05} -- R - - —— B -==-1--- --- — -

=

o

204

803
0.2
0.1
0.0

LH RH LH RH

EncodingType . Self vs Stranger |:| Self vs Friend |:| Friend vs Stranger
d=.040.

Figure 4. Decoding accuracies by identity. Top Panel: Decoding accuracies in frontoparietal regions
showed a degree of selectivity for the self. The Left Inferior Parietal Lobule (IPL), Right Inferior Frontal
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Gyrus (IFG), and Left Primary Motor Cortex (M1) significantly decoded self-identity relative to all other
identities. Bottom Panel: Decoding accuracies in occipitotemporal regions. The Left Extrastriate Body
Area (EBA) decoded between all identities, and the Right STS significantly decoded friend identity
(friend vs stranger and friend vs self) significantly better than other comparisons. Dashed blue line
indicates chance decoding accuracy (0.5). Error bars denote standard error of the means.

Table 2. Decoding accuracies across ROIls after FDR correction.

ROI decoding accuracies, N=20
Self vs Friend

Self vs Stranger Friend vs Stranger

IPL LH 1=4.087, p=0.00627 1=3.608, p=.00857 t=.271, p=.8164
IPL RH t=2.730, p=.02847 t=2.224, p=.06315 t=1.800, p=.13159
IFG LH t=2.261, p=.06315 t=1.082, p=.35124 t=-.787, p=.50884
IFG RH 1=2.445, p=.0488 t=2.763, p=.0284 t=1.641, p=.8164
M1 LH 1=3.229, p=.01653 t=4.631, p=.00436 t=-.651, p=.5184
M1RH t=1.141, p=.3348 t=3.112, p=.01893 t=.398, p=.74428
EBA LH t=3.069, p=.01893 t=2.881,p=.0225 t=3.675, p=.0075
EBA RH t=2.246, p=.06315 t=2.912, p=.0225 t=3.579, p=.0085
STSLH t=1.430, p=.2204 t=1.522, p=.19718 t=.177, p=.895
STSRH t=2.194, p=.06315 1=3.716, p=.0084 t=3.675, p=.00436

Boldface denotes statistical significance (corrected for multiple comparisons).

3.3 Relationships to motor imagery ability

Next, we measured whether decoding accuracy between identities in the ROIs related to motor
imagery ability, using the VMIQ-2 subscale scores (internal, external, and kinaesthetic). Visual
inspection of Q-Q plots revealed that raw scores on both internal and kinaesthetic motor
imagery subscales deviated from normality (full analysis reported in Supplementary Materials).
A Shapiro-Wilk test confirmed significant skew and leptokurtic data for internal motor imagery
(W=0.826, p=0.002) and kinaesthetic motor imagery (skewness=1.3; kurtosis=4.75),
W=0.86518, p=0.009678. Hence, we applied a Box—Cox transformation to both sets of scores.
After the transformation, both skewness (internal: 0.17; kinesthetic: .081) and kurtosis (internal:
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1.99; kinaesthetic: 2.045) significantly reduced, and the Shapiro-Wilk test yielded non-
significant results (internal: W=0.942, p=0.265; Kkinaesthetic: W=0.95905, p=0.525),
approximating a normal distribution. The transformed internal and kinaesthetic motor imagery
scores were used in all subsequent analyses with the raw external motor imagery scores, which
satisfied all assumptions. We related decoding accuracy in the ROIs with motor imagery ability
in separate multiple regression models. Multicollinearity was assessed using the Variance
Inflation Factor (VIF; all <5). We corrected for multiple comparisons between models using the
Benjamini-Hochberg False Discovery Rate (Benjamini & Hochberg, 1995) based on hemisphere
and site. Note all motor imagery (VMIQ-2) scores are reverse scored, in that higher scores
indicate weaker motor imagery ability.

3.3.1 Frontoparietal regions: IPL decoding for self is associated with motor imagery ability
For the Left IPL, the model showed that participants with more kinaesthetic (b=-1.582, p=.003,

95% CI [-2.534, -.630]) and reduced external (b=.004, p=.033, 95% CI [-2.097, 19.502]) motor
imagery ability could better decode self from stranger identity, F(1,19)=7.184, pagjusted=.012,
adjusted R?=.394 (shown in Figure 5; note that the scale for motor imagery is reverse-scored).
Follow-up correlations confirmed the relationship between kinaesthetic motor imagery and Left
IPL activity (r=-.535, p=.015, 95% CI [-.790, -.121]), while external motor imagery did not
maintain significance (r=-.257, p=.274). No other significant models were observed: Left, self v
friend, Padjustea=-301, friend v stranger, Pagjusted=-301; Right, self v friend, pagjusted=.289; self v
stranger, Padjusted=-383, friend v stranger, Padjustea=.289.

3.3.2 Frontoparietal regions: IFG decoding for other identities is negatively associated with
motor imagery ability

For the Left IFG, we observed negative relationships between friend and stranger decoding and
with internal motor imagery (b=5.297, p=.014, 95% CI [1.219, 9.376]), F(1,19)=7.445,
Padjusted=-0420, adjusted R?=.253 (shown in Figure 5; note that the scale for motor imagery is
reverse-scored). Follow-up correlation confirmed the relationship: r=.542, p=.013, 95% CI
[.129, .794]. Note that Kinesthetic motor imagery ability was also negatively associated with
Left IFG activity (r=.501, p=.024, 95% CI [.076, .773]), but the coefficient did not attain
significance during the initial predictor selection step, b=.241, p=.458. No significant models
were observed for self vs friend pagjustes=.250, self vs stranger pagjustea=-316, nor the Right IFG:
self v friend, padjusted=.204; self v stranger, Pagjusted=.358, friend v stranger, pagjusted=-358.

Finally, while the regression model for Left M1 decoding self vs stranger actions was
significantly predicted by internal motor imagery ability (p=.047), the model did not maintain
significance after the FDR correction (Padjustea=-141). No other significant regression models
emerged for the M1: Left, pagjustea=.704, friend vs stranger, pagjusea=.704; Right, self v stranger:
Padjusted=-673, Self v friend: pagjusted=.469, friend vs stranger: pagjusted=.156.
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Figure 5. Associations between motor imagery (VMIQ-2) and identity decoding in frontoparietal regions:
IPL and IFG. (A) Greater kinaesthetic motor imagery ability predicts better self vs stranger identity decoding
accuracy in the left IPL (r=-.535,p=0.015). (B) Greater internal motor imagery ability predicts reduced friend vs
stranger decoding in the right IFG (r=.542, p=.013). Each panel depicts individual data points (black dots),
regression line (black), and 95% confidence interval. All y-axes represent decoding accuracy (0-1), while x-axes
reflect motor imagery ability scores. Note: all VMIQ-2 scores measuring motor imagery are reverse-scored.
Specifically, higher motor imagery scores on the VMIQ-2 indicate reduced motor imagery ability. The scores were
transformed with a Box—Cox transformation .

3.3.3 Occipitotemporal regions: Left EBA decoding for self identity is associated with motor
imagery ability

For the Left EBA, participants with more kinaesthetic motor imagery (b=-1.066, p=.005,

95% CI [-1.765, -.366]) better decoded self actions from friends’ actions, F(1,19)=10.247,
Padjusted=-012, adjusted R’=.327 (shown in Figure 6; note that the scale for motor imagery is
reverse-scored). Follow-up correlations confirmed the relationship between kinaesthetic motor
imagery and Left EBA activity (r=-.602,p=.005, 95% CI [-.825, -.218]), as well as with
composite motor imagery scores (r=-.467, p=.038, 95% CI [-.754, -.031]). While the regression
model for decoding friend from strangers actions was also significant in the Left EBA,
F(2,17)=6.476, Pagjustea=-012, with external (b=.007, p=.013, 95% CI [.002, .012]) and
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kinaesthetic (b=-2.019, p=.002, 95% CI [-3.220 -.817]) motor imagery, neither relationship
maintained in follow-up correlations (kinaesthetic: r=-.412, p=.065; external: r=-.133, p=.635).
No other significant models were observed: Left, self vs stranger (pagjustes=-051); Right, self vs
friend (Pagjusted=-289), self vs stranger (Padjustea=-383), friend vs stranger (Padjustea=-289).

3.3.4 Occipitotemporal regions: Left STS decoding for self identity is associated with motor
imagery ability

For the Left STS, participants with more internal motor imagery ability better decoded self from
stranger identities, b=-8.827, p=.009, 95% CI [-14.183, -.172], F(1,19)=8.719, Padjustea=-027,
adjusted R?=.289 (shown in Figure 6; note that the scale for motor imagery is reverse-scored).
Follow-up correlations confirmed the relationship between internal motor imagery and Left STS
decoding accuracy (r=-.571, p=.009, 95% CI [-14.183, 2.391]). No other significant models
were observed: Left, self vs friend (Pagjustea=-507), friend vs stranger (Pagjustea=-393), Right, self
vs friend (Padjustea=.456), self vs stranger (Padjustea=-913), friend vs stranger (Padjusted=-456).
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Figure 6. Associations between motor imagery (VMIQ-2) and identity decoding in occipitotemporal localizer
regions: EBA and STS. (A) Greater kinaesthetic motor imagery ability predicts better self vs friend identity
decoding accuracy in the Left EBA (r=-.602, p=0.005). (B) Greater internal motor imagery ability predicts better
self vs stranger decoding in the Left STS (r=-.573, p=.008). Each panel depicts individual data points (black dots),
regression line (black), and 95% confidence interval. All y-axes represent decoding accuracy (0-1), while x-axes
reflect motor imagery ability scores. Note: all VMIQ-2 results are reverse-scored and transformed.

4. Discussion
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Our findings demonstrate that brain areas involved in self-action recognition are influenced by
motor imagery ability. Theories of action simulation posit that the ability to internally simulate
motor actions underlies both the physical act of motor production as well as the perceptual
observation of actions (Gallese and Goldman, 1998; Gallese, 2005). Consistent with this
framework, our neuroimaging data demonstrate a key role of motor imagery, as a proxy for
action simulation, in facilitating the neural decoding of self-action identity. These relationships
were observed in the inferior parietal lobule (IPL), inferior frontal gyrus (IFG), primary motor
cortex (M1), extrastriate body area (EBA), and superior temporal sulcus (STS).

Building on our prior work (Kadambi et al., 2025) which identified self-action recognition
markers across the action observation network (broadly including frontoparietal and
occipitotemporal regions), the present study extends those findings by linking multivariate
decoding accuracy to motor imagery ability. These results intreduce neural evidence for motor
imagery ability as a possible mechanism to support self-recognition from actions.

A specific selectivity for self-action identity decoding was observed in the following
frontoparietal sites: Left IPL, Left M1, and Right IFG. These regions are considered neural
substrates for action simulation, and involved in discriminating between actions of the self and
others (Rizzolatti & Craighero, 2004; lacoboni, 2009). Moreover, the degree of activation in
these regions is modulated by the observer’s degree of motor familiarity and expertise (Calvo-
Merino et al., 2006; Cross et al., 2006) and greater volume in these regions is associated with
increased motor imagery ability (Furuta et al., 2024). Note that while we do not advance a
strong claim regarding hemispheric lateralization due to modeling individual variability, we
report hemispheric findings across all sites for completeness.

In the Left IPL, individuals with stronger kinaesthetic motor imagery, i.e., simulating the
‘feeling’ associated with motor execution, were better able to decode their own actions. The IPL
is implicated in numerous processes, including visuospatial processing, motor attention,
movement selection, motor planning (Binkofski and Buxbaum, 2013, Buxbaum et al., 2007,
Lebon et al., 2012, Rizzolatti and Matelli, 2003, Rushworth et al., 2001, Rushworth et al., 1997),
and bodily self-awareness (i.e., encoding the awareness of the body in space, Gallese et al.,
2007). Damage to this region from stroke or with targeted inhibitory non-invasive brain
stimulation impairs motor imagery ability (Oostra et al., 2016; Evans et al., 2016; Kraeutner et
al., 2016, Mclnnes et al., 2016, Sirigu et al., 1996; Kraetner et al., 2019), which generally shows
a left hemisphere dominance (Binkofski and Buxbaum, 2013; Buxbaum et al., 2007; Buxbaum
et al., 2006; Evans et al., 2016). Our findings support the role of the IPL (notably the left) as a
region encoding motor imagery as a key region supporting internal self-action representations.
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In the occipitotemporal cortex, the Left EBA successfully decoded all identities, while the Right
EBA and STS prioritized friend identity decoding. The EBA has been previously shown to
distinguish between the self and others body representations, such as static photographs (Vocks
et al., 2010). This differentiation, however, is not strictly self-specific and the EBA can
distinguish across different identities (Chan et al., 2004), as is consistent with our data. Notably,
decoding between self and friend actions that emerged in the Left EBA was associated with
kinaesthetic motor imagery ability. The novel relationship with motor imagery suggests a deeper
function of the EBA, potentially in integrating kinaesthetic and visuo-motor (internal) feedback
to support the keeping of online, internal topographic body representations (Ishizu et al., 2009;
Orlov et al., 2010). For instance, transiently inhibiting EBA activity is shown to reduce
proprioceptive awareness of one’s own limb (Wold et al., 2014), while applying excitatory
direct current stimulation to the lateral occipital temporal cortex increases motor imagery ability
(Kikuchi et al., 2017). The EBA also responds to participants’ limb-directed movements, even
when their eyes are closed (Astafiev et al., 2004), lendirig support to its role in internally
generated, proprioceptive or motor-based representations, beyond visual processing alone.

For the Left STS, decoding accuracy between self and stranger was associated with internal
motor imagery ability in the left hemisphere. The STS is a key site implicated in processing
biological motion (Grossman & Blake, 2001) and action imagery (Kourtzi & Kanwisher, 2000).
Unlike kinaesthetic motor imagery which involves imagining the sensations and feelings of
actions, internal motor imagery reflects a more visuomotor perspective (i.e., a first-person
visualization of performing the action). The association between STS decoding and internal
motor imagery ability may therefore reflect the STS's role in supporting visual, rather than
bodily, aspects of imagined action (Grossman & Blake, 2001). Note that lateralized patterns did
emerge in our results. For instance, stranger and friend identity decoding was stronger in the
right STS whereas motor imagery ability was associated with decoding self-identity in the left
hemisphere counterpart. While we refrain from drawing strong conclusions about hemispheric
specialization, this asymmetry may point to partially distinct roles for left and right hemisphere
regions in processing identity-related versus imagery-related features.

While the Left IFG did not show significant identity decoding between identities, decoding
between friend and strangers negatively related to internal motor imagery ability (i.e., the first-
person simulation of action production). Specifically, individuals with more vivid internal motor
imagery relied less on the IFG when differentiating between familiar (friend) and unfamiliar
(stranger) actors. One possible interpretation may relate to previous work on action
representations. That work suggested a division of labor according to which IFG codes more the
goal of the action (Sokolov et al., 2018; Wurm et al., 2014) and the IPL its precise motor
specification (lacoboni et al., 2005). Therefore, IPL-based motor specification may go together
with motor imagery to decode identities (friend versus stranger in this case), while IFG-based
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goal processing may get in the way of decoding identities, since action goals can be achieved
with many different motoric specifications. Note that across the correlation analyses between
multivariate pattern analysis and motor imagery, a few participants scored below chance
performance on identity decoding. However, no participants exhibited extreme or systematic
below-chance decoding. Hence, we avoided excluding any participants with slightly below-
chance decoding. These values are expected due to sampling variability around the chance
baseline and excluding them could bias the results by removing valid variability.

Finally, while our sample size was modest (N=20), we employed rigorous analysis strategies,
including variable transformations, regression modeling for predictor selection, and multiple
comparisons correction. Nevertheless, we acknowledge the limitations of our sample size.
Future work with larger cohorts can further substantiate and expand upon our findings.

4.1 Conclusions

Our results suggest that motor imagery and the process of seif-recognition from visually sparse
actions are functionally linked. Cortical areas involved in action processing for self and others
appear to encode these functional links. Together, these findings support longstanding embodied
frameworks (Merleau-Ponty, 1962; Gallagher, 2006) that have to date only speculated on the
importance of motor imagery and action simulation in supporting self-action recognition. Future
investigations can help determine the extent of its relevance to clinical disorders related to self-
recognition, and interventions aimed at neurorehabilitation.
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